Results 1 
4 of
4
Parameterized Complexity
, 1998
"... the rapidly developing systematic connections between FPT and useful heuristic algorithms  a new and exciting bridge between the theory of computing and computing in practice. The organizers of the seminar strongly believe that knowledge of parameterized complexity techniques and results belongs ..."
Abstract

Cited by 1213 (77 self)
 Add to MetaCart
the rapidly developing systematic connections between FPT and useful heuristic algorithms  a new and exciting bridge between the theory of computing and computing in practice. The organizers of the seminar strongly believe that knowledge of parameterized complexity techniques and results belongs into the toolkit of every algorithm designer. The purpose of the seminar was to bring together leading experts from all over the world, and from the diverse areas of computer science that have been attracted to this new framework. The seminar was intended as the rst larger international meeting with a specic focus on parameterized complexity, and it hopefully serves as a driving force in the development of the eld. 1 We had 49 participants from Australia, Canada, India, Israel, New Zealand, USA, and various European countries. During the workshop 25 lectures were given. Moreover, one night session was devoted to open problems and Thursday was basically used for problem discussion
On the parameterized complexity of multipleinterval graph problems
 Theor. Comput. Sci
"... Abstract. Multipleinterval graphs are a natural generalization of interval graphs where each vertex may have more than one interval associated with it. Many applications of interval graphs also generalize to multipleinterval graphs, often allowing for more robustness in the modeling of the specifi ..."
Abstract

Cited by 50 (8 self)
 Add to MetaCart
(Show Context)
Abstract. Multipleinterval graphs are a natural generalization of interval graphs where each vertex may have more than one interval associated with it. Many applications of interval graphs also generalize to multipleinterval graphs, often allowing for more robustness in the modeling of the specific application. With this motivation in mind, a recent systematic study of optimization problems in multipleinterval graphs was initiated. In this sequel, we study multipleinterval graph problems from the perspective of parameterized complexity. The problems under consideration are kIndependent Set, kDominating Set, and kClique, which are all known to be W[1]hard for general graphs, and NPcomplete for multipleinterval graphs. We prove that kClique is in FPT, while kIndependent Set and kDominating Set are both W[1]hard. We also prove that kIndependent Dominating Set, a hybrid of the two above problems, is also W[1]hard. Our hardness results hold even when each vertex is associated with at most two intervals, and all intervals have unit length. Furthermore, as an interesting byproduct of our hardness results, we develop a useful technique for showing W[1]hardness via a reduction from the kMulticolored Clique problem, a variant of kClique. We believe this technique has interest in its own right, as it should help in simplifying W[1]hardness results which are notoriously hard to construct and technically tedious.
RNA as a Permutation
"... Abstract—RNA secondary structure prediction and classification are two important problems in the field of RNA biology. Here, we propose a new permutation based approach to create logical nondisjoint clusters of different secondary structures of a single class or type. Many different types of techn ..."
Abstract
 Add to MetaCart
(Show Context)
Abstract—RNA secondary structure prediction and classification are two important problems in the field of RNA biology. Here, we propose a new permutation based approach to create logical nondisjoint clusters of different secondary structures of a single class or type. Many different types of techniques exist to classify RNA secondary structure data but none of them have ever used permutation based approach which is very simple and yet powerful. We have written a small JAVA program to generate permutation, apply our algorithm on those permutations and analyze the data and create different logical clusters. We believe that these clusters can be utilized to untangle the mystery of RNA secondary structure and analyze the development patterns of unknown RNA.