Results 1 
5 of
5
Spectral Thompson Sampling
, 2014
"... Thompson Sampling (TS) has surged a lot of interest due to its good empirical performance, in particular in the computational advertising. Though successful, the tools for its performance analysis appeared only recently. In this paper, we describe and analyze SpectralTS algorithm for a bandit prob ..."
Abstract

Cited by 3 (2 self)
 Add to MetaCart
Thompson Sampling (TS) has surged a lot of interest due to its good empirical performance, in particular in the computational advertising. Though successful, the tools for its performance analysis appeared only recently. In this paper, we describe and analyze SpectralTS algorithm for a bandit problem, where the payoffs of the choices are smooth given an underlying graph. In this setting, each choice is a node of a graph and the expected payoffs of the neighboring nodes are assumed to be similar. Although the setting has application both in recommender systems and advertising, the traditional algorithms would scale poorly with the number of choices. For that purpose we consider an effective dimension d, which is small in realworld graphs. We deliver the analysis showing that the regret of SpectralTS scales as d T lnN with high probability, where T is the time horizon and N is the number of choices. Since a d T lnN regret is comparable to the known results, SpectralTS offers a computationally more efficient alternative. We also show that our algorithm is competitive on both synthetic and realworld data.
Bounded Regret for FiniteArmed Structured Bandits
, 2014
"... We study a new type of Karmed bandit problem where the expected return of one arm may depend on the returns of other arms. We present a new algorithm for this general class of problems and show that under certain circumstances it is possible to achieve finite expected cumulative regret. We also giv ..."
Abstract
 Add to MetaCart
We study a new type of Karmed bandit problem where the expected return of one arm may depend on the returns of other arms. We present a new algorithm for this general class of problems and show that under certain circumstances it is possible to achieve finite expected cumulative regret. We also give problemdependent lower bounds on the cumulative regret showing that at least in special cases the new algorithm is nearly optimal.
Optimal Resource Allocation with SemiBandit Feedback
"... We study a sequential resource allocation problem involving a fixed number of recurring jobs. At each timestep the manager should distribute available resources among the jobs in order to maximise the expected number of completed jobs. Allocating more resources to a given job increases the probab ..."
Abstract
 Add to MetaCart
We study a sequential resource allocation problem involving a fixed number of recurring jobs. At each timestep the manager should distribute available resources among the jobs in order to maximise the expected number of completed jobs. Allocating more resources to a given job increases the probability that it completes, but with a cutoff. Specifically, we assume a linear model where the probability increases linearly until it equals one, after which allocating additional resources is wasteful. We assume the difficulty of each job is unknown and present the first algorithm for this problem and prove upper and lower bounds on its regret. Despite its apparent simplicity, the problem has a rich structure: we show that an appropriate optimistic algorithm can improve its learning speed dramatically beyond the results one normally expects for similar problems as the problem becomes resourceladen. 1
SequeL team
"... Thompson Sampling (TS) has surged a lot of interest due to its good empirical performance, in particular in the computational advertising. Though successful, the tools for its performance analysis appeared only recently. In this paper, we describe and analyze SpectralTS algorithm for a bandit prob ..."
Abstract
 Add to MetaCart
Thompson Sampling (TS) has surged a lot of interest due to its good empirical performance, in particular in the computational advertising. Though successful, the tools for its performance analysis appeared only recently. In this paper, we describe and analyze SpectralTS algorithm for a bandit problem, where the payoffs of the choices are smooth given an underlying graph. In this setting, each choice is a node of a graph and the expected payoffs of the neighboring nodes are assumed to be similar. Although the setting has application both in recommender systems and advertising, the traditional algorithms would scale poorly with the number of choices. For that purpose we consider an effective dimension d, which is small in realworld graphs. We deliver the analysis showing that the regret of SpectralTS scales as d T lnN with high probability, where T is the time horizon and N is the number of choices. Since a d T lnN regret is comparable to the known results, SpectralTS offers a computationally more efficient alternative. We also show that our algorithm is competitive on both synthetic and realworld data. 1