Results 1  10
of
386
Short signatures from the Weil pairing
, 2001
"... We introduce a short signature scheme based on the Computational DiffieHellman assumption on certain elliptic and hyperelliptic curves. The signature length is half the size of a DSA signature for a similar level of security. Our short signature scheme is designed for systems where signatures ar ..."
Abstract

Cited by 755 (25 self)
 Add to MetaCart
(Show Context)
We introduce a short signature scheme based on the Computational DiffieHellman assumption on certain elliptic and hyperelliptic curves. The signature length is half the size of a DSA signature for a similar level of security. Our short signature scheme is designed for systems where signatures are typed in by a human or signatures are sent over a lowbandwidth channel.
Secure routing for structured peertopeer overlay networks
, 2002
"... Structured peertopeer overlay networks provide a substrate for the construction of largescale, decentralized applications, including distributed storage, group communication, and content distribution. These overlays are highly resilient; they can route messages correctly even when a large fract ..."
Abstract

Cited by 473 (12 self)
 Add to MetaCart
(Show Context)
Structured peertopeer overlay networks provide a substrate for the construction of largescale, decentralized applications, including distributed storage, group communication, and content distribution. These overlays are highly resilient; they can route messages correctly even when a large fraction of the nodes crash or the network partitions. But current overlays are not secure; even a small fraction of malicious nodes can prevent correct message delivery throughout the overlay. This problem is particularly serious in open peertopeer systems, where many diverse, autonomous parties without preexisting trust relationships wish to pool their resources. This paper studies attacks aimed at preventing correct message delivery in structured peertopeer overlays and presents defenses to these attacks. We describe and evaluate techniques that allow nodes to join the overlay, to maintain routing state, and to forward messages securely in the presence of malicious nodes. 1
A Concrete Security Treatment of Symmetric Encryption
 Proceedings of the 38th Symposium on Foundations of Computer Science, IEEE
, 1997
"... We study notions and schemes for symmetric (ie. private key) encryption in a concrete security framework. We give four di erent notions of security against chosen plaintext attack and analyze the concrete complexity ofreductions among them, providing both upper and lower bounds, and obtaining tight ..."
Abstract

Cited by 421 (65 self)
 Add to MetaCart
(Show Context)
We study notions and schemes for symmetric (ie. private key) encryption in a concrete security framework. We give four di erent notions of security against chosen plaintext attack and analyze the concrete complexity ofreductions among them, providing both upper and lower bounds, and obtaining tight relations. In this way we classify notions (even though polynomially reducible to each other) as stronger or weaker in terms of concrete security. Next we provide concrete security analyses of methods to encrypt using a block cipher, including the most popular encryption method, CBC. We establish tight bounds (meaning
Practical Byzantine fault tolerance and proactive recovery
 ACM Transactions on Computer Systems
, 2002
"... Our growing reliance on online services accessible on the Internet demands highly available systems that provide correct service without interruptions. Software bugs, operator mistakes, and malicious attacks are a major cause of service interruptions and they can cause arbitrary behavior, that is, B ..."
Abstract

Cited by 410 (7 self)
 Add to MetaCart
Our growing reliance on online services accessible on the Internet demands highly available systems that provide correct service without interruptions. Software bugs, operator mistakes, and malicious attacks are a major cause of service interruptions and they can cause arbitrary behavior, that is, Byzantine faults. This article describes a new replication algorithm, BFT, that can be used to build highly available systems that tolerate Byzantine faults. BFT can be used in practice to implement real services: it performs well, it is safe in asynchronous environments such as the Internet, it incorporates mechanisms to defend against Byzantinefaulty clients, and it recovers replicas proactively. The recovery mechanism allows the algorithm to tolerate any number of faults over the lifetime of the system provided fewer than 1/3 of the replicas become faulty within a small window of vulnerability. BFT has been implemented as a generic program library with a simple interface. We used the library to implement the first Byzantinefaulttolerant NFS file system, BFS. The BFT library and BFS perform well because the library incorporates several important optimizations, the most important of which is the use of symmetric cryptography to authenticate messages. The performance results show that BFS performs 2 % faster to 24 % slower than production implementations of the NFS protocol that are not replicated. This supports our claim that the
On the Importance of Checking Cryptographic Protocols for Faults
, 1997
"... We present a theoretical model for breaking various cryptographic schemes by taking advantage of random hardware faults. We show how to attack certain implementations of RSA and Rabin signatures. An implementation of RSA based on the Chinese Remainder Theorem can be broken using a single erroneous s ..."
Abstract

Cited by 405 (6 self)
 Add to MetaCart
(Show Context)
We present a theoretical model for breaking various cryptographic schemes by taking advantage of random hardware faults. We show how to attack certain implementations of RSA and Rabin signatures. An implementation of RSA based on the Chinese Remainder Theorem can be broken using a single erroneous signature. Other implementations can be broken using a larger number of erroneous signatures. We also analyze the vulnerability to hardware faults of two identification protocols: FiatShamir and Schnorr. The FiatShamir protocol can be broken after a small number of erroneous executions of the protocol. Schnorr's protocol can also be broken, but a larger number of erroneous executions is needed. Keywords: Hardware faults, Cryptanalysis, RSA, FiatShamir, Schnorr, Public key systems, Identification protocols. 1 Introduction Direct attacks on the famous RSA cryptosystem seem to require that one factor the modulus. Therefore, it is interesting to ask whether there are attacks that avoid this....
Short Signatures without Random Oracles
, 2004
"... We describe a short signature scheme which is existentially unforgeable under a chosen message attack without using random oracles. The security of our scheme depends on a new complexity assumption we call the Strong Di#eHellman assumption. This assumption has similar properties to the Strong RS ..."
Abstract

Cited by 393 (11 self)
 Add to MetaCart
We describe a short signature scheme which is existentially unforgeable under a chosen message attack without using random oracles. The security of our scheme depends on a new complexity assumption we call the Strong Di#eHellman assumption. This assumption has similar properties to the Strong RSA assumption, hence the name. Strong RSA was previously used to construct signature schemes without random oracles. However, signatures generated by our scheme are much shorter and simpler than signatures from schemes based on Strong RSA.
Security Arguments for Digital Signatures and Blind Signatures
 JOURNAL OF CRYPTOLOGY
, 2000
"... Since the appearance of publickey cryptography in the seminal DiffieHellman paper, many new schemes have been proposed and many have been broken. Thus, the ..."
Abstract

Cited by 375 (39 self)
 Add to MetaCart
Since the appearance of publickey cryptography in the seminal DiffieHellman paper, many new schemes have been proposed and many have been broken. Thus, the
Aggregate and Verifiably Encrypted Signatures from Bilinear Maps
, 2002
"... An aggregate signature scheme is a digital signature that supports aggregation: Given n signatures on n distinct messages from n distinct users, it is possible to aggregate all these signatures into a single short signature. This single signature (and the n original messages) will convince the verif ..."
Abstract

Cited by 336 (12 self)
 Add to MetaCart
(Show Context)
An aggregate signature scheme is a digital signature that supports aggregation: Given n signatures on n distinct messages from n distinct users, it is possible to aggregate all these signatures into a single short signature. This single signature (and the n original messages) will convince the verifier that the n users did indeed sign the n original messages (i.e., user i signed message M i for i = 1; : : : ; n). In this paper we introduce the concept of an aggregate signature scheme, present security models for such signatures, and give several applications for aggregate signatures. We construct an efficient aggregate signature from a recent short signature scheme based on bilinear maps due to Boneh, Lynn, and Shacham. Aggregate signatures are useful for reducing the size of certificate chains (by aggregating all signatures in the chain) and for reducing message size in secure routing protocols such as SBGP. We also show that aggregate signatures give rise to verifiably encrypted signatures. Such signatures enable the verifier to test that a given ciphertext C is the encryption of a signature on a given message M . Verifiably encrypted signatures are used in contractsigning protocols. Finally, we show that similar ideas can be used to extend the short signature scheme to give simple ring signatures.
Provable Data Possession at Untrusted Stores
, 2007
"... We introduce a model for provable data possession (PDP) that allows a client that has stored data at an untrusted server to verify that the server possesses the original data without retrieving it. The model generates probabilistic proofs of possession by sampling random sets of blocks from the serv ..."
Abstract

Cited by 302 (9 self)
 Add to MetaCart
We introduce a model for provable data possession (PDP) that allows a client that has stored data at an untrusted server to verify that the server possesses the original data without retrieving it. The model generates probabilistic proofs of possession by sampling random sets of blocks from the server, which drastically reduces I/O costs. The client maintains a constant amount of metadata to verify the proof. The challenge/response protocol transmits a small, constant amount of data, which minimizes network communication. Thus, the PDP model for remote data checking supports large data sets in widelydistributed storage systems. We present two provablysecure PDP schemes that are more efficient than previous solutions, even when compared with schemes that achieve weaker guarantees. In particular, the overhead at the server is low (or even constant), as opposed to linear in the size of the data. Experiments using our implementation verify the practicality of PDP and reveal that the performance of PDP is bounded by disk I/O and not by cryptographic computation.