Results 1  10
of
9,919
Optimization Mode Research of Weighted Undirected Graph
"... Abstract. An algorithm is described for constructing a weighted undirected graph structure, based on the principle of directed acyclic graph, used the improved Floyd algorithm to improve the multinode version of the evolution of information in order to release as an indicator of difference, to imp ..."
Abstract
 Add to MetaCart
Abstract. An algorithm is described for constructing a weighted undirected graph structure, based on the principle of directed acyclic graph, used the improved Floyd algorithm to improve the multinode version of the evolution of information in order to release as an indicator of difference
A shortest path algorithm for realweighted undirected graphs
 in 13th ACMSIAM Symp. on Discrete Algs
, 1985
"... Abstract. We present a new scheme for computing shortest paths on realweighted undirected graphs in the fundamental comparisonaddition model. In an efficient preprocessing phase our algorithm creates a linearsize structure that facilitates singlesource shortest path computations in O(m log α) ti ..."
Abstract

Cited by 16 (4 self)
 Add to MetaCart
Abstract. We present a new scheme for computing shortest paths on realweighted undirected graphs in the fundamental comparisonaddition model. In an efficient preprocessing phase our algorithm creates a linearsize structure that facilitates singlesource shortest path computations in O(m log α
A Conductance Electrical Model for Representing and Matching Weighted Undirected Graphs ∗
"... In this paper we propose a conductance electrical model to represent weighted undirected graphs that allows us to efficiently compute approximate graph isomorphism in large graphs. The model is built by transforming a graph into an electrical circuit. Edges in the graph become conductances in the ..."
Abstract
 Add to MetaCart
In this paper we propose a conductance electrical model to represent weighted undirected graphs that allows us to efficiently compute approximate graph isomorphism in large graphs. The model is built by transforming a graph into an electrical circuit. Edges in the graph become conductances
Constant Ratio Approximations of Feedback Vertex Sets in Weighted Undirected Graphs
, 1996
"... A feedback vertex set of a graph is a subset of vertices that contains at least one vertex from every cycle in the graph. We show that a feedback vertex set approximating a minimum one within a constant factor can be e ciently found in undirected graphs. In fact the derived approximation ratio match ..."
Abstract

Cited by 6 (1 self)
 Add to MetaCart
A feedback vertex set of a graph is a subset of vertices that contains at least one vertex from every cycle in the graph. We show that a feedback vertex set approximating a minimum one within a constant factor can be e ciently found in undirected graphs. In fact the derived approximation ratio
An algorithm for drawing general undirected graphs
 Information Processing Letters
, 1989
"... Graphs (networks) are very common data structures which are handled in computers. Diagrams are widely used to represent the graph structures visually in many information systems. In order to automatically draw the diagrams which are, for example, state graphs, dataflow graphs, Petri nets, and entit ..."
Abstract

Cited by 698 (2 self)
 Add to MetaCart
Graphs (networks) are very common data structures which are handled in computers. Diagrams are widely used to represent the graph structures visually in many information systems. In order to automatically draw the diagrams which are, for example, state graphs, dataflow graphs, Petri nets
Depth first search and linear graph algorithms
 SIAM JOURNAL ON COMPUTING
, 1972
"... The value of depthfirst search or "backtracking" as a technique for solving problems is illustrated by two examples. An improved version of an algorithm for finding the strongly connected components of a directed graph and ar algorithm for finding the biconnected components of an undirect ..."
Abstract

Cited by 1406 (19 self)
 Add to MetaCart
of an undirect graph are presented. The space and time requirements of both algorithms are bounded by k 1V + k2E d k for some constants kl, k2, and k a, where Vis the number of vertices and E is the number of edges of the graph being examined.
The geometry of graphs and some of its algorithmic applications
 COMBINATORICA
, 1995
"... In this paper we explore some implications of viewing graphs as geometric objects. This approach offers a new perspective on a number of graphtheoretic and algorithmic problems. There are several ways to model graphs geometrically and our main concern here is with geometric representations that res ..."
Abstract

Cited by 524 (19 self)
 Add to MetaCart
that respect the metric of the (possibly weighted) graph. Given a graph G we map its vertices to a normed space in an attempt to (i) Keep down the dimension of the host space and (ii) Guarantee a small distortion, i.e., make sure that distances between vertices in G closely match the distances between
A distributed algorithm for minimumweight spanning trees
, 1983
"... A distributed algorithm is presented that constructs he minimumweight spanning tree in a connected undirected graph with distinct edge weights. A processor exists at each node of the graph, knowing initially only the weights of the adjacent edges. The processors obey the same algorithm and exchange ..."
Abstract

Cited by 435 (3 self)
 Add to MetaCart
A distributed algorithm is presented that constructs he minimumweight spanning tree in a connected undirected graph with distinct edge weights. A processor exists at each node of the graph, knowing initially only the weights of the adjacent edges. The processors obey the same algorithm
SemiSupervised Learning Using Gaussian Fields and Harmonic Functions
 IN ICML
, 2003
"... An approach to semisupervised learning is proposed that is based on a Gaussian random field model. Labeled and unlabeled data are represented as vertices in a weighted graph, with edge weights encoding the similarity between instances. The learning ..."
Abstract

Cited by 752 (14 self)
 Add to MetaCart
An approach to semisupervised learning is proposed that is based on a Gaussian random field model. Labeled and unlabeled data are represented as vertices in a weighted graph, with edge weights encoding the similarity between instances. The learning
A fast learning algorithm for deep belief nets
 Neural Computation
, 2006
"... We show how to use “complementary priors ” to eliminate the explaining away effects that make inference difficult in denselyconnected belief nets that have many hidden layers. Using complementary priors, we derive a fast, greedy algorithm that can learn deep, directed belief networks one layer at a ..."
Abstract

Cited by 970 (49 self)
 Add to MetaCart
at a time, provided the top two layers form an undirected associative memory. The fast, greedy algorithm is used to initialize a slower learning procedure that finetunes the weights using a contrastive version of the wakesleep algorithm. After finetuning, a network with three hidden layers forms a
Results 1  10
of
9,919