• Documents
  • Authors
  • Tables
  • Log in
  • Sign up
  • MetaCart
  • DMCA
  • Donate

CiteSeerX logo

Advanced Search Include Citations

Tools

Sorted by:
Try your query at:
Semantic Scholar Scholar Academic
Google Bing DBLP
Results 1 - 10 of 9,053
Next 10 →

Using Discriminant Eigenfeatures for Image Retrieval

by Daniel L. Swets, John Weng , 1996
"... This paper describes the automatic selection of features from an image training set using the theories of multi-dimensional linear discriminant analysis and the associated optimal linear projection. We demonstrate the effectiveness of these Most Discriminating Features for view-based class retrieval ..."
Abstract - Cited by 508 (15 self) - Add to MetaCart
This paper describes the automatic selection of features from an image training set using the theories of multi-dimensional linear discriminant analysis and the associated optimal linear projection. We demonstrate the effectiveness of these Most Discriminating Features for view-based class

Content-based image retrieval at the end of the early years

by Arnold W. M. Smeulders, Marcel Worring, Simone Santini, Amarnath Gupta, Ramesh Jain - IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE , 2000
"... The paper presents a review of 200 references in content-based image retrieval. The paper starts with discussing the working conditions of content-based retrieval: patterns of use, types of pictures, the role of semantics, and the sensory gap. Subsequent sections discuss computational steps for imag ..."
Abstract - Cited by 1618 (24 self) - Add to MetaCart
The paper presents a review of 200 references in content-based image retrieval. The paper starts with discussing the working conditions of content-based retrieval: patterns of use, types of pictures, the role of semantics, and the sensory gap. Subsequent sections discuss computational steps

A Language Modeling Approach to Information Retrieval

by Jay M. Ponte, W. Bruce Croft , 1998
"... Models of document indexing and document retrieval have been extensively studied. The integration of these two classes of models has been the goal of several researchers but it is a very difficult problem. We argue that much of the reason for this is the lack of an adequate indexing model. This sugg ..."
Abstract - Cited by 1154 (42 self) - Add to MetaCart
Models of document indexing and document retrieval have been extensively studied. The integration of these two classes of models has been the goal of several researchers but it is a very difficult problem. We argue that much of the reason for this is the lack of an adequate indexing model

Reexamining the Cluster Hypothesis: Scatter/Gather on Retrieval Results

by Marti A. Hearst, Jan O. Pedersen , 1996
"... We present Scatter/Gather, a cluster-based document browsing method, as an alternative to ranked titles for the organization and viewing of retrieval results. We systematically evaluate Scatter/Gather in this context and find significant improvements over similarity search ranking alone. This resul ..."
Abstract - Cited by 480 (5 self) - Add to MetaCart
We present Scatter/Gather, a cluster-based document browsing method, as an alternative to ranked titles for the organization and viewing of retrieval results. We systematically evaluate Scatter/Gather in this context and find significant improvements over similarity search ranking alone

The Entity-Relationship Model: Toward a Unified View of Data

by Peter Pin-shan Chen - ACM Transactions on Database Systems , 1976
"... A data model, called the entity-relationship model, is proposed. This model incorporates some of the important semantic information about the real world. A special diagrammatic technique is introduced as a tool for database design. An example of database design and description using the model and th ..."
Abstract - Cited by 1829 (6 self) - Add to MetaCart
and the diagrammatic technique is given. Some implications for data integrity, infor-mation retrieval, and data manipulation are discussed. The entity-relationship model can be used as a basis for unification of different views of data: t,he network model, the relational model, and the entity set model. Semantic

Additive Logistic Regression: a Statistical View of Boosting

by Jerome Friedman, Trevor Hastie, Robert Tibshirani - Annals of Statistics , 1998
"... Boosting (Freund & Schapire 1996, Schapire & Singer 1998) is one of the most important recent developments in classification methodology. The performance of many classification algorithms can often be dramatically improved by sequentially applying them to reweighted versions of the input dat ..."
Abstract - Cited by 1750 (25 self) - Add to MetaCart
be viewed as an approximation to additive modeling on the logistic scale using maximum Bernoulli likelihood as a criterion. We develop more direct approximations and show that they exhibit nearly identical results to boosting. Direct multi-class generalizations based on multinomial likelihood are derived

Toward an instance theory of automatization

by Gordon D. Logan - Psychological Review , 1988
"... This article presents a theory in which automatization is construed as the acquisition of a domain-specific knowledge base, formed of separate representations, instances, of each exposure to the task. Processing is considered automatic if it relies on retrieval of stored instances, which will occur ..."
Abstract - Cited by 647 (38 self) - Add to MetaCart
This article presents a theory in which automatization is construed as the acquisition of a domain-specific knowledge base, formed of separate representations, instances, of each exposure to the task. Processing is considered automatic if it relies on retrieval of stored instances, which will occur

Greedy Function Approximation: A Gradient Boosting Machine

by Jerome H. Friedman - Annals of Statistics , 2000
"... Function approximation is viewed from the perspective of numerical optimization in function space, rather than parameter space. A connection is made between stagewise additive expansions and steepest{descent minimization. A general gradient{descent \boosting" paradigm is developed for additi ..."
Abstract - Cited by 1000 (13 self) - Add to MetaCart
for additive expansions based on any tting criterion. Specic algorithms are presented for least{squares, least{absolute{deviation, and Huber{M loss functions for regression, and multi{class logistic likelihood for classication. Special enhancements are derived for the particular case where the individual

Learning realistic human actions from movies

by Ivan Laptev, Marcin Marszałek, Cordelia Schmid, Benjamin Rozenfeld - IN: CVPR. , 2008
"... The aim of this paper is to address recognition of natural human actions in diverse and realistic video settings. This challenging but important subject has mostly been ignored in the past due to several problems one of which is the lack of realistic and annotated video datasets. Our first contribut ..."
Abstract - Cited by 738 (48 self) - Add to MetaCart
contribution is to address this limitation and to investigate the use of movie scripts for automatic annotation of human actions in videos. We evaluate alternative methods for action retrieval from scripts and show benefits of a text-based classifier. Using the retrieved action samples for visual learning, we

Concurrent Constraint Programming

by Vijay A. Saraswat, Martin Rinard , 1993
"... This paper presents a new and very rich class of (con-current) programming languages, based on the notion of comput.ing with parhal information, and the con-commitant notions of consistency and entailment. ’ In this framework, computation emerges from the inter-action of concurrently executing agent ..."
Abstract - Cited by 502 (16 self) - Add to MetaCart
This paper presents a new and very rich class of (con-current) programming languages, based on the notion of comput.ing with parhal information, and the con-commitant notions of consistency and entailment. ’ In this framework, computation emerges from the inter-action of concurrently executing
Next 10 →
Results 1 - 10 of 9,053
Powered by: Apache Solr
  • About CiteSeerX
  • Submit and Index Documents
  • Privacy Policy
  • Help
  • Data
  • Source
  • Contact Us

Developed at and hosted by The College of Information Sciences and Technology

© 2007-2019 The Pennsylvania State University