• Documents
  • Authors
  • Tables
  • Log in
  • Sign up
  • MetaCart
  • DMCA
  • Donate

CiteSeerX logo

Advanced Search Include Citations

Tools

Sorted by:
Try your query at:
Semantic Scholar Scholar Academic
Google Bing DBLP
Results 1 - 10 of 60,088
Next 10 →

Recognizing landmarks using automated classification techniques: an evaluation of various visual features

by Fabrizio Falchi, Paolo Bolettieri - In in Proceeding of The Second Interantional Conference on Advances in Multimedia (MMEDIA 2010 , 2010
"... Abstract—In this paper, the performance of several visual features is evaluated in automatically recognizing landmarks (monuments, statues, buildings, etc.) in pictures. A number of landmarks were selected for the test. Pictures taken from a test set were classified automatically trying to guess whi ..."
Abstract - Cited by 4 (2 self) - Add to MetaCart
Abstract—In this paper, the performance of several visual features is evaluated in automatically recognizing landmarks (monuments, statues, buildings, etc.) in pictures. A number of landmarks were selected for the test. Pictures taken from a test set were classified automatically trying to guess

A Tutorial on Visual Servo Control

by Seth Hutchinson, Greg Hager, Peter Corke - IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION , 1996
"... This paper provides a tutorial introduction to visual servo control of robotic manipulators. Since the topic spans many disciplines our goal is limited to providing a basic conceptual framework. We begin by reviewing the prerequisite topics from robotics and computer vision, including a brief review ..."
Abstract - Cited by 839 (26 self) - Add to MetaCart
visual servo system must be capable of tracking image features in a sequence of images, we include an overview of feature-based and correlation-based methods for tracking. We conclude the tutorial with a number of observations on the current directions of the research field of visual servo control.

The Visual Analysis of Human Movement: A Survey

by D. M. Gavrila - Computer Vision and Image Understanding , 1999
"... The ability to recognize humans and their activities by vision is key for a machine to interact intelligently and effortlessly with a human-inhabited environment. Because of many potentially important applications, “looking at people ” is currently one of the most active application domains in compu ..."
Abstract - Cited by 743 (9 self) - Add to MetaCart
in computer vision. This survey identifies a number of promising applications and provides an overview of recent developments in this domain. The scope of this survey is limited to work on whole-body or hand motion; it does not include work on human faces. The emphasis is on discussing the various

Rapid object detection using a boosted cascade of simple features

by Paul Viola, Michael Jones - ACCEPTED CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION 2001 , 2001
"... This paper describes a machine learning approach for visual object detection which is capable of processing images extremely rapidly and achieving high detection rates. This work is distinguished by three key contributions. The first is the introduction of a new image representation called the " ..."
Abstract - Cited by 3283 (9 self) - Add to MetaCart
the "Integral Image" which allows the features used by our detector to be computed very quickly. The second is a learning algorithm, based on AdaBoost, which selects a small number of critical visual features from a larger set and yields extremely efficient classifiers[6]. The third contribution

A Model of Saliency-based Visual Attention for Rapid Scene Analysis

by Laurent Itti, Christof Koch, Ernst Niebur , 1998
"... A visual attention system, inspired by the behavior and the neuronal architecture of the early primate visual system, is presented. Multiscale image features are combined into a single topographical saliency map. A dynamical neural network then selects attended locations in order of decreasing salie ..."
Abstract - Cited by 1748 (72 self) - Add to MetaCart
A visual attention system, inspired by the behavior and the neuronal architecture of the early primate visual system, is presented. Multiscale image features are combined into a single topographical saliency map. A dynamical neural network then selects attended locations in order of decreasing

VisualSEEk: a fully automated content-based image query system

by John R. Smith, Shih-fu Chang , 1996
"... We describe a highly functional prototype system for searching by visual features in an image database. The VisualSEEk system is novel in that the user forms the queries by diagramming spatial arrangements of color regions. The system finds the images that contain the most similar arrangements of ..."
Abstract - Cited by 762 (31 self) - Add to MetaCart
We describe a highly functional prototype system for searching by visual features in an image database. The VisualSEEk system is novel in that the user forms the queries by diagramming spatial arrangements of color regions. The system finds the images that contain the most similar arrangements

UCSF Chimera—a visualization system for exploratory research and analysis

by Eric F. Pettersen, Thomas D. Goddard, Conrad C. Huang, Gregory S. Couch, Daniel M. Greenblatt, Elaine C. Meng, Thomas E. Ferrin - J. Comput. Chem , 2004
"... Abstract: The design, implementation, and capabilities of an extensible visualization system, UCSF Chimera, are discussed. Chimera is segmented into a core that provides basic services and visualization, and extensions that provide most higher level functionality. This architecture ensures that the ..."
Abstract - Cited by 504 (7 self) - Add to MetaCart
that the extension mechanism satisfies the demands of outside developers who wish to incorporate new features. Two unusual extensions are presented: Multiscale, which adds the ability to visualize large-scale molecular assemblies such as viral coats, and Collaboratory, which allows researchers to share a Chimera

High confidence visual recognition of persons by a test of statistical independence

by John G. Daugman - IEEE TRANS. ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE , 1993
"... A method for rapid visual recognition of personal identity is described, based on the failure of a statistical test of independence. The most unique phenotypic feature visible in a person’s face is the detailed texture of each eye’s iris: An estimate of its statistical complexity in a sample of the ..."
Abstract - Cited by 621 (8 self) - Add to MetaCart
A method for rapid visual recognition of personal identity is described, based on the failure of a statistical test of independence. The most unique phenotypic feature visible in a person’s face is the detailed texture of each eye’s iris: An estimate of its statistical complexity in a sample

Fastmap: A fast algorithm for indexing, data-mining and visualization of traditional and multimedia datasets

by Christos Faloutsos, King-Ip (David) Lin , 1995
"... A very promising idea for fast searching in traditional and multimedia databases is to map objects into points in k-d space, using k feature-extraction functions, provided by a domain expert [Jag91]. Thus, we can subsequently use highly fine-tuned spatial access methods (SAMs), to answer several ..."
Abstract - Cited by 502 (22 self) - Add to MetaCart
A very promising idea for fast searching in traditional and multimedia databases is to map objects into points in k-d space, using k feature-extraction functions, provided by a domain expert [Jag91]. Thus, we can subsequently use highly fine-tuned spatial access methods (SAMs), to answer several

Learning generative visual models from few training examples: an incremental Bayesian approach tested on 101 object categories

by Li Fei-fei , 2004
"... Abstract — Current computational approaches to learning visual object categories require thousands of training images, are slow, cannot learn in an incremental manner and cannot incorporate prior information into the learning process. In addition, no algorithm presented in the literature has been te ..."
Abstract - Cited by 784 (16 self) - Add to MetaCart
Abstract — Current computational approaches to learning visual object categories require thousands of training images, are slow, cannot learn in an incremental manner and cannot incorporate prior information into the learning process. In addition, no algorithm presented in the literature has been
Next 10 →
Results 1 - 10 of 60,088
Powered by: Apache Solr
  • About CiteSeerX
  • Submit and Index Documents
  • Privacy Policy
  • Help
  • Data
  • Source
  • Contact Us

Developed at and hosted by The College of Information Sciences and Technology

© 2007-2019 The Pennsylvania State University