• Documents
  • Authors
  • Tables
  • Log in
  • Sign up
  • MetaCart
  • DMCA
  • Donate

CiteSeerX logo

Advanced Search Include Citations

Tools

Sorted by:
Try your query at:
Semantic Scholar Scholar Academic
Google Bing DBLP
Results 1 - 10 of 31,541
Next 10 →

Modeling TCP Throughput: A Simple Model and its Empirical Validation

by Jitendra Padhye, Victor Firoiu, Don Towsley, Jim Kurose , 1998
"... In this paper we develop a simple analytic characterization of the steady state throughput, as a function of loss rate and round trip time for a bulk transfer TCP flow, i.e., a flow with an unlimited amount of data to send. Unlike the models in [6, 7, 10], our model captures not only the behavior of ..."
Abstract - Cited by 1337 (36 self) - Add to MetaCart
In this paper we develop a simple analytic characterization of the steady state throughput, as a function of loss rate and round trip time for a bulk transfer TCP flow, i.e., a flow with an unlimited amount of data to send. Unlike the models in [6, 7, 10], our model captures not only the behavior

Neural network ensembles, cross validation, and active learning

by Anders Krogh, Jesper Vedelsby - Neural Information Processing Systems 7 , 1995
"... Learning of continuous valued functions using neural network en-sembles (committees) can give improved accuracy, reliable estima-tion of the generalization error, and active learning. The ambiguity is defined as the variation of the output of ensemble members aver-aged over unlabeled data, so it qua ..."
Abstract - Cited by 479 (6 self) - Add to MetaCart
Learning of continuous valued functions using neural network en-sembles (committees) can give improved accuracy, reliable estima-tion of the generalization error, and active learning. The ambiguity is defined as the variation of the output of ensemble members aver-aged over unlabeled data, so

Fair end-to-end window-based congestion control

by Jeonghoon Mo, Jean Walrand - IEEE/ACM TRANS. ON NETWORKING , 2000
"... In this paper, we demonstrate the existence of fair end-to-end window-based congestion control protocols for packetswitched networks with first come-first served routers. Our definition of fairness generalizes proportional fairness and includes arbitrarily close approximations of max-min fairness. T ..."
Abstract - Cited by 676 (3 self) - Add to MetaCart
. The protocols use only information that is available to end hosts and are designed to converge reasonably fast. Our study is based on a multiclass fluid model of the network. The convergence of the protocols is proved using a Lyapunov function. The technical challenge is in the practical implementation

Achieving 100% Throughput in an Input-Queued Switch

by Nick McKeown, Adisak Mekkittikul, Venkat Anantharam, Jean Walrand - IEEE TRANSACTIONS ON COMMUNICATIONS , 1996
"... It is well known that head-of-line (HOL) blocking limits the throughput of an input-queued switch with FIFO queues. Under certain conditions, the throughput can be shown to be limited to approximately 58%. It is also known that if non-FIFO queueing policies are used, the throughput can be increas ..."
Abstract - Cited by 527 (27 self) - Add to MetaCart
and quadratic Lyapunov function. In particular, we assume that each input maintains a separate FIFO queue for each output and that the switch is scheduled using a maximum weight bipartite matching algorithm. We introduce two maximum weight matching algorithms: LQF and OCF. Both

Consensus Problems in Networks of Agents with Switching Topology and Time-Delays

by Reza Olfati Saber, Richard M. Murray , 2003
"... In this paper, we discuss consensus problems for a network of dynamic agents with fixed and switching topologies. We analyze three cases: i) networks with switching topology and no time-delays, ii) networks with fixed topology and communication time-delays, and iii) max-consensus problems (or leader ..."
Abstract - Cited by 1112 (21 self) - Add to MetaCart
.e. algebraic connectivity of the network) and the negotiation speed (or performance) of the corresponding agreement protocol. It turns out that balanced digraphs play an important role in addressing average-consensus problems. We introduce disagreement functions that play the role of Lyapunov functions

A new learning algorithm for blind signal separation

by S. Amari, A. Cichocki, H. H. Yang - , 1996
"... A new on-line learning algorithm which minimizes a statistical de-pendency among outputs is derived for blind separation of mixed signals. The dependency is measured by the average mutual in-formation (MI) of the outputs. The source signals and the mixing matrix are unknown except for the number of ..."
Abstract - Cited by 622 (80 self) - Add to MetaCart
of the sources. The Gram-Charlier expansion instead of the Edgeworth expansion is used in evaluating the MI. The natural gradient approach is used to minimize the MI. A novel activation function is proposed for the on-line learning algorithm which has an equivariant property and is easily implemented on a neural

Convolution Kernels on Discrete Structures

by David Haussler , 1999
"... We introduce a new method of constructing kernels on sets whose elements are discrete structures like strings, trees and graphs. The method can be applied iteratively to build a kernel on an infinite set from kernels involving generators of the set. The family of kernels generated generalizes the fa ..."
Abstract - Cited by 506 (0 self) - Add to MetaCart
the theory of infinitely divisible positive definite functions. Fundamentals of this theory and the theory of reproducing kernel Hilbert spaces are reviewed and applied in establishing the validity of the method.

The pyramid match kernel: Discriminative classification with sets of image features

by Kristen Grauman, Trevor Darrell - IN ICCV , 2005
"... Discriminative learning is challenging when examples are sets of features, and the sets vary in cardinality and lack any sort of meaningful ordering. Kernel-based classification methods can learn complex decision boundaries, but a kernel over unordered set inputs must somehow solve for correspondenc ..."
Abstract - Cited by 544 (29 self) - Add to MetaCart
in the number of features, and it implicitly finds correspondences based on the finest resolution histogram cell where a matched pair first appears. Since the kernel does not penalize the presence of extra features, it is robust to clutter. We show the kernel function is positive-definite, making it valid

Representing twentieth century space-time climate variability, part 1: development of a 1961-90 mean monthly terrestrial climatology

by Mark New, Mike Hulme, Phil Jones - Journal of Climate , 1999
"... The construction of a 0.58 lat 3 0.58 long surface climatology of global land areas, excluding Antarctica, is described. The climatology represents the period 1961–90 and comprises a suite of nine variables: precipitation, wet-day frequency, mean temperature, diurnal temperature range, vapor pressur ..."
Abstract - Cited by 581 (13 self) - Add to MetaCart
pressure, sunshine, cloud cover, ground frost frequency, and wind speed. The climate surfaces have been constructed from a new dataset of station 1961–90 climatological normals, numbering between 19 800 (precipitation) and 3615 (wind speed). The station data were interpolated as a function of latitude

A review of image denoising algorithms, with a new one

by A. Buades, B. Coll, J. M. Morel - SIMUL , 2005
"... The search for efficient image denoising methods is still a valid challenge at the crossing of functional analysis and statistics. In spite of the sophistication of the recently proposed methods, most algorithms have not yet attained a desirable level of applicability. All show an outstanding perf ..."
Abstract - Cited by 508 (6 self) - Add to MetaCart
The search for efficient image denoising methods is still a valid challenge at the crossing of functional analysis and statistics. In spite of the sophistication of the recently proposed methods, most algorithms have not yet attained a desirable level of applicability. All show an outstanding
Next 10 →
Results 1 - 10 of 31,541
Powered by: Apache Solr
  • About CiteSeerX
  • Submit and Index Documents
  • Privacy Policy
  • Help
  • Data
  • Source
  • Contact Us

Developed at and hosted by The College of Information Sciences and Technology

© 2007-2019 The Pennsylvania State University