Results 1 - 10
of
132,736
Continuously monitored barrier options under Markov processes
, 2009
"... Abstract. In this paper we present an algorithm for pricing barrier options in one-dimensional Markov models. The approach rests on the construction of an approximating continuous-time Markov chain that closely follows the dynamics of the given Markov model. We illustrate the method by implementing ..."
Abstract
-
Cited by 7 (3 self)
- Add to MetaCart
Abstract. In this paper we present an algorithm for pricing barrier options in one-dimensional Markov models. The approach rests on the construction of an approximating continuous-time Markov chain that closely follows the dynamics of the given Markov model. We illustrate the method by implementing
A General Framework for Pricing Asian Options Under Markov Processes
"... This article may be used only for the purposes of research, teaching, and/or private study. Commercial use or systematic downloading (by robots or other automatic processes) is prohibited without explicit Publisher approval, unless otherwise noted. For more information, contact ..."
Abstract
- Add to MetaCart
This article may be used only for the purposes of research, teaching, and/or private study. Commercial use or systematic downloading (by robots or other automatic processes) is prohibited without explicit Publisher approval, unless otherwise noted. For more information, contact
The Infinite Hidden Markov Model
- Machine Learning
, 2002
"... We show that it is possible to extend hidden Markov models to have a countably infinite number of hidden states. By using the theory of Dirichlet processes we can implicitly integrate out the infinitely many transition parameters, leaving only three hyperparameters which can be learned from data. Th ..."
Abstract
-
Cited by 637 (41 self)
- Add to MetaCart
We show that it is possible to extend hidden Markov models to have a countably infinite number of hidden states. By using the theory of Dirichlet processes we can implicitly integrate out the infinitely many transition parameters, leaving only three hyperparameters which can be learned from data
A Compositional Approach to Performance Modelling
, 1996
"... Performance modelling is concerned with the capture and analysis of the dynamic behaviour of computer and communication systems. The size and complexity of many modern systems result in large, complex models. A compositional approach decomposes the system into subsystems that are smaller and more ea ..."
Abstract
-
Cited by 757 (102 self)
- Add to MetaCart
as model construction. An operational semantics is provided for PEPA and its use to generate an underlying Markov process for any PEPA model is explained and demonstrated. Model simplification and state space aggregation have been proposed as means to tackle the problems of large performance models
What is a hidden Markov model?
, 2004
"... Often, problems in biological sequence analysis are just a matter of putting the right label on each residue. In gene identification, we want to label nucleotides as exons, introns, or intergenic sequence. In sequence alignment, we want to associate residues in a query sequence with ho-mologous resi ..."
Abstract
-
Cited by 1344 (8 self)
- Add to MetaCart
, and a polyadenylation signal. All too often, piling more reality onto a fragile ad hoc program makes it collapse under its own weight. Hidden Markov models (HMMs) are a formal foundation for making probabilistic models of
Markov chain sampling methods for Dirichlet process mixture models
- JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS
, 2000
"... ..."
Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm
- IEEE TRANSACTIONS ON MEDICAL. IMAGING
, 2001
"... The finite mixture (FM) model is the most commonly used model for statistical segmentation of brain magnetic resonance (MR) images because of its simple mathematical form and the piecewise constant nature of ideal brain MR images. However, being a histogram-based model, the FM has an intrinsic limi ..."
Abstract
-
Cited by 639 (15 self)
- Add to MetaCart
-based methods produce unreliable results. In this paper, we propose a novel hidden Markov random field (HMRF) model, which is a stochastic process generated by a MRF whose state sequence cannot be observed directly but which can be indirectly estimated through observations. Mathematically, it can be shown
Coupled hidden Markov models for complex action recognition
, 1996
"... We present algorithms for coupling and training hidden Markov models (HMMs) to model interacting processes, and demonstrate their superiority to conventional HMMs in a vision task classifying two-handed actions. HMMs are perhaps the most successful framework in perceptual computing for modeling and ..."
Abstract
-
Cited by 501 (22 self)
- Add to MetaCart
We present algorithms for coupling and training hidden Markov models (HMMs) to model interacting processes, and demonstrate their superiority to conventional HMMs in a vision task classifying two-handed actions. HMMs are perhaps the most successful framework in perceptual computing for modeling
Markov games as a framework for multi-agent reinforcement learning
- IN PROCEEDINGS OF THE ELEVENTH INTERNATIONAL CONFERENCE ON MACHINE LEARNING
, 1994
"... In the Markov decision process (MDP) formalization of reinforcement learning, a single adaptive agent interacts with an environment defined by a probabilistic transition function. In this solipsistic view, secondary agents can only be part of the environment and are therefore fixed in their behavior ..."
Abstract
-
Cited by 601 (13 self)
- Add to MetaCart
In the Markov decision process (MDP) formalization of reinforcement learning, a single adaptive agent interacts with an environment defined by a probabilistic transition function. In this solipsistic view, secondary agents can only be part of the environment and are therefore fixed
Reversible jump Markov chain Monte Carlo computation and Bayesian model determination
- Biometrika
, 1995
"... Markov chain Monte Carlo methods for Bayesian computation have until recently been restricted to problems where the joint distribution of all variables has a density with respect to some xed standard underlying measure. They have therefore not been available for application to Bayesian model determi ..."
Abstract
-
Cited by 1345 (23 self)
- Add to MetaCart
Markov chain Monte Carlo methods for Bayesian computation have until recently been restricted to problems where the joint distribution of all variables has a density with respect to some xed standard underlying measure. They have therefore not been available for application to Bayesian model
Results 1 - 10
of
132,736