• Documents
  • Authors
  • Tables
  • Log in
  • Sign up
  • MetaCart
  • DMCA
  • Donate

CiteSeerX logo

Advanced Search Include Citations

Tools

Sorted by:
Try your query at:
Semantic Scholar Scholar Academic
Google Bing DBLP
Results 1 - 10 of 21,441
Next 10 →

Nonparametric model for background subtraction

by Ahmed Elgammal, David Harwood, Larry Davis - in ECCV ’00 , 2000
"... Abstract. Background subtraction is a method typically used to seg-ment moving regions in image sequences taken from a static camera by comparing each new frame to a model of the scene background. We present a novel non-parametric background model and a background subtraction approach. The model can ..."
Abstract - Cited by 545 (17 self) - Add to MetaCart
achieves very sensitive detection with very low false alarm rates. Key words: visual motion, active and real time vision, motion detection, non-parametric estimation, visual surveillance, shadow detection 1

Nonparametric estimation of average treatment effects under exogeneity: a review

by Guido W. Imbens - REVIEW OF ECONOMICS AND STATISTICS , 2004
"... Recently there has been a surge in econometric work focusing on estimating average treatment effects under various sets of assumptions. One strand of this literature has developed methods for estimating average treatment effects for a binary treatment under assumptions variously described as exogen ..."
Abstract - Cited by 630 (25 self) - Add to MetaCart
Recently there has been a surge in econometric work focusing on estimating average treatment effects under various sets of assumptions. One strand of this literature has developed methods for estimating average treatment effects for a binary treatment under assumptions variously described

Estimating Wealth Effects without Expenditure Data— or Tears

by Deon Filmer, Lant Pritchett - Policy Research Working Paper 1980, The World , 1998
"... Abstract: We use the National Family Health Survey (NFHS) data collected in Indian states in 1992 and 1993 to estimate the relationship between household wealth and the probability a child (aged 6 to 14) is enrolled in school. A methodological difficulty to overcome is that the NFHS, modeled closely ..."
Abstract - Cited by 871 (16 self) - Add to MetaCart
Abstract: We use the National Family Health Survey (NFHS) data collected in Indian states in 1992 and 1993 to estimate the relationship between household wealth and the probability a child (aged 6 to 14) is enrolled in school. A methodological difficulty to overcome is that the NFHS, modeled

Measuring and testing the impact of news on volatility

by Robert F. Engle, Victor K. Ng , 1991
"... This paper introduces the News Impact Curve to measure how new information is incorporated into volatility estimates. A variety of new and existing ARCH models are compared and estimated with daily Japanese stock return data to determine the shape of the News Impact Curve. New diagnostic tests are p ..."
Abstract - Cited by 726 (14 self) - Add to MetaCart
are presented which emphasize the asymmetry of the volatility response to news. A partially non-parametric ARCH model is introduced to allow the data to estimate this shape. A comparison of this model with the existing models suggests that the best models are one by Glosten Jaganathan and Runkle (GJR

Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties

by Jianqing Fan , Runze Li , 2001
"... Variable selection is fundamental to high-dimensional statistical modeling, including nonparametric regression. Many approaches in use are stepwise selection procedures, which can be computationally expensive and ignore stochastic errors in the variable selection process. In this article, penalized ..."
Abstract - Cited by 948 (62 self) - Add to MetaCart
Variable selection is fundamental to high-dimensional statistical modeling, including nonparametric regression. Many approaches in use are stepwise selection procedures, which can be computationally expensive and ignore stochastic errors in the variable selection process. In this article, penalized

Mean shift: A robust approach toward feature space analysis

by Dorin Comaniciu, Peter Meer - In PAMI , 2002
"... A general nonparametric technique is proposed for the analysis of a complex multimodal feature space and to delineate arbitrarily shaped clusters in it. The basic computational module of the technique is an old pattern recognition procedure, the mean shift. We prove for discrete data the convergence ..."
Abstract - Cited by 2395 (37 self) - Add to MetaCart
A general nonparametric technique is proposed for the analysis of a complex multimodal feature space and to delineate arbitrarily shaped clusters in it. The basic computational module of the technique is an old pattern recognition procedure, the mean shift. We prove for discrete data

A Language Modeling Approach to Information Retrieval

by Jay M. Ponte, W. Bruce Croft , 1998
"... Models of document indexing and document retrieval have been extensively studied. The integration of these two classes of models has been the goal of several researchers but it is a very difficult problem. We argue that much of the reason for this is the lack of an adequate indexing model. This sugg ..."
Abstract - Cited by 1154 (42 self) - Add to MetaCart
an approach to retrieval based on probabilistic language modeling. We estimate models for each document individually. Our approach to modeling is non-parametric and integrates document indexing and document retrieval into a single model. One advantage of our approach is that collection statistics which

Smooth minimization of nonsmooth functions

by Yu. Nesterov - Math. Programming , 2005
"... In this paper we propose a new approach for constructing efficient schemes for nonsmooth convex optimization. It is based on a special smoothing technique, which can be applied to the functions with explicit max-structure. Our approach can be considered as an alternative to black-box minimization. F ..."
Abstract - Cited by 523 (1 self) - Add to MetaCart
. From the viewpoint of efficiency estimates, we manage to improve the traditional bounds on the number of iterations of the gradient schemes from O unchanged. 1 ɛ 2 to O

A New Extension of the Kalman Filter to Nonlinear Systems

by Simon J. Julier, Jeffrey K. Uhlmann , 1997
"... The Kalman filter(KF) is one of the most widely used methods for tracking and estimation due to its simplicity, optimality, tractability and robustness. However, the application of the KF to nonlinear systems can be difficult. The most common approach is to use the Extended Kalman Filter (EKF) which ..."
Abstract - Cited by 778 (6 self) - Add to MetaCart
The Kalman filter(KF) is one of the most widely used methods for tracking and estimation due to its simplicity, optimality, tractability and robustness. However, the application of the KF to nonlinear systems can be difficult. The most common approach is to use the Extended Kalman Filter (EKF

A direct approach to false discovery rates

by John D. Storey , 2002
"... Summary. Multiple-hypothesis testing involves guarding against much more complicated errors than single-hypothesis testing. Whereas we typically control the type I error rate for a single-hypothesis test, a compound error rate is controlled for multiple-hypothesis tests. For example, controlling the ..."
Abstract - Cited by 775 (14 self) - Add to MetaCart
the false discovery rate FDR traditionally involves intricate sequential p-value rejection methods based on the observed data. Whereas a sequential p-value method fixes the error rate and estimates its corresponding rejection region, we propose the opposite approach—we fix the rejection region
Next 10 →
Results 1 - 10 of 21,441
Powered by: Apache Solr
  • About CiteSeerX
  • Submit and Index Documents
  • Privacy Policy
  • Help
  • Data
  • Source
  • Contact Us

Developed at and hosted by The College of Information Sciences and Technology

© 2007-2019 The Pennsylvania State University