• Documents
  • Authors
  • Tables
  • Log in
  • Sign up
  • MetaCart
  • DMCA
  • Donate

CiteSeerX logo

Advanced Search Include Citations

Tools

Sorted by:
Try your query at:
Semantic Scholar Scholar Academic
Google Bing DBLP
Results 1 - 10 of 85,904
Next 10 →

Wrapper Induction for Information Extraction

by Nicholas Kushmerick , 1997
"... The Internet presents numerous sources of useful information---telephone directories, product catalogs, stock quotes, weather forecasts, etc. Recently, many systems have been built that automatically gather and manipulate such information on a user's behalf. However, these resources are usually ..."
Abstract - Cited by 624 (30 self) - Add to MetaCart
The Internet presents numerous sources of useful information---telephone directories, product catalogs, stock quotes, weather forecasts, etc. Recently, many systems have been built that automatically gather and manipulate such information on a user's behalf. However, these resources

Maximum entropy markov models for information extraction and segmentation

by Andrew McCallum, Dayne Freitag, Fernando Pereira , 2000
"... Hidden Markov models (HMMs) are a powerful probabilistic tool for modeling sequential data, and have been applied with success to many text-related tasks, such as part-of-speech tagging, text segmentation and information extraction. In these cases, the observations are usually modeled as multinomial ..."
Abstract - Cited by 561 (18 self) - Add to MetaCart
Hidden Markov models (HMMs) are a powerful probabilistic tool for modeling sequential data, and have been applied with success to many text-related tasks, such as part-of-speech tagging, text segmentation and information extraction. In these cases, the observations are usually modeled

Incorporating non-local information into information extraction systems by Gibbs sampling

by Jenny Rose Finkel, Trond Grenager, Christopher Manning - IN ACL , 2005
"... Most current statistical natural language processing models use only local features so as to permit dynamic programming in inference, but this makes them unable to fully account for the long distance structure that is prevalent in language use. We show how to solve this dilemma with Gibbs sampling, ..."
Abstract - Cited by 730 (25 self) - Add to MetaCart
use this technique to augment an existing CRF-based information extraction system with long-distance dependency models, enforcing label consistency and extraction template consistency constraints. This technique results in an error reduction of up to 9 % over state-of-the-art systems on two

Fastmap: A fast algorithm for indexing, data-mining and visualization of traditional and multimedia datasets

by Christos Faloutsos, King-Ip (David) Lin , 1995
"... A very promising idea for fast searching in traditional and multimedia databases is to map objects into points in k-d space, using k feature-extraction functions, provided by a domain expert [Jag91]. Thus, we can subsequently use highly fine-tuned spatial access methods (SAMs), to answer several ..."
Abstract - Cited by 502 (22 self) - Add to MetaCart
A very promising idea for fast searching in traditional and multimedia databases is to map objects into points in k-d space, using k feature-extraction functions, provided by a domain expert [Jag91]. Thus, we can subsequently use highly fine-tuned spatial access methods (SAMs), to answer several

Open information extraction from the web

by Michele Banko, Michael J Cafarella, Stephen Soderland, Matt Broadhead, Oren Etzioni - IN IJCAI , 2007
"... Traditionally, Information Extraction (IE) has focused on satisfying precise, narrow, pre-specified requests from small homogeneous corpora (e.g., extract the location and time of seminars from a set of announcements). Shifting to a new domain requires the user to name the target relations and to ma ..."
Abstract - Cited by 373 (39 self) - Add to MetaCart
Traditionally, Information Extraction (IE) has focused on satisfying precise, narrow, pre-specified requests from small homogeneous corpora (e.g., extract the location and time of seminars from a set of announcements). Shifting to a new domain requires the user to name the target relations

Information Theory and Statistics

by S. Kullback , 1968
"... Entropy and relative entropy are proposed as features extracted from symbol sequences. Firstly, a proper Iterated Function System is driven by the sequence, producing a fractaMike representation (CSR) with a low computational cost. Then, two entropic measures are applied to the CSR histogram of th ..."
Abstract - Cited by 1805 (2 self) - Add to MetaCart
Entropy and relative entropy are proposed as features extracted from symbol sequences. Firstly, a proper Iterated Function System is driven by the sequence, producing a fractaMike representation (CSR) with a low computational cost. Then, two entropic measures are applied to the CSR histogram

Formal Ontology and Information Systems

by Nicola Guarino , 1998
"... Research on ontology is becoming increasingly widespread in the computer science community, and its importance is being recognized in a multiplicity of research fields and application areas, including knowledge engineering, database design and integration, information retrieval and extraction. We sh ..."
Abstract - Cited by 897 (11 self) - Add to MetaCart
Research on ontology is becoming increasingly widespread in the computer science community, and its importance is being recognized in a multiplicity of research fields and application areas, including knowledge engineering, database design and integration, information retrieval and extraction. We

Modern Information Retrieval

by Ricardo Baeza-Yates, Berthier Ribeiro-Neto , 1999
"... Information retrieval (IR) has changed considerably in the last years with the expansion of the Web (World Wide Web) and the advent of modern and inexpensive graphical user interfaces and mass storage devices. As a result, traditional IR textbooks have become quite out-of-date which has led to the i ..."
Abstract - Cited by 3233 (29 self) - Add to MetaCart
Information retrieval (IR) has changed considerably in the last years with the expansion of the Web (World Wide Web) and the advent of modern and inexpensive graphical user interfaces and mass storage devices. As a result, traditional IR textbooks have become quite out-of-date which has led

"GrabCut” -- interactive foreground extraction using iterated graph cuts

by Carsten Rother, Vladimir Kolmogorov, Andrew Blake - ACM TRANS. GRAPH , 2004
"... The problem of efficient, interactive foreground/background segmentation in still images is of great practical importance in image editing. Classical image segmentation tools use either texture (colour) information, e.g. Magic Wand, or edge (contrast) information, e.g. Intelligent Scissors. Recently ..."
Abstract - Cited by 1130 (36 self) - Add to MetaCart
The problem of efficient, interactive foreground/background segmentation in still images is of great practical importance in image editing. Classical image segmentation tools use either texture (colour) information, e.g. Magic Wand, or edge (contrast) information, e.g. Intelligent Scissors

A framework for information systems architecture.

by J A Zachman - IBM Syst. J., , 1987
"... With increasing size and complexity of the implementations of information systems, it is necessary to use some logical construct (or architecture) for defining and controlling the interfaces and the integration of all of the components of the system. This paper defines information systems architect ..."
Abstract - Cited by 546 (0 self) - Add to MetaCart
With increasing size and complexity of the implementations of information systems, it is necessary to use some logical construct (or architecture) for defining and controlling the interfaces and the integration of all of the components of the system. This paper defines information systems
Next 10 →
Results 1 - 10 of 85,904
Powered by: Apache Solr
  • About CiteSeerX
  • Submit and Index Documents
  • Privacy Policy
  • Help
  • Data
  • Source
  • Contact Us

Developed at and hosted by The College of Information Sciences and Technology

© 2007-2019 The Pennsylvania State University