• Documents
  • Authors
  • Tables
  • Log in
  • Sign up
  • MetaCart
  • DMCA
  • Donate

CiteSeerX logo

Advanced Search Include Citations

Tools

Sorted by:
Try your query at:
Semantic Scholar Scholar Academic
Google Bing DBLP
Results 1 - 10 of 14,821
Next 10 →

A new string-to-dependency machine translation algorithm with a target dependency language model

by Libin Shen, Jinxi Xu, Ralph Weischedel - In Proc. of ACL , 2008
"... In this paper, we propose a novel string-todependency algorithm for statistical machine translation. With this new framework, we employ a target dependency language model during decoding to exploit long distance word relations, which are unavailable with a traditional n-gram language model. Our expe ..."
Abstract - Cited by 135 (7 self) - Add to MetaCart
In this paper, we propose a novel string-todependency algorithm for statistical machine translation. With this new framework, we employ a target dependency language model during decoding to exploit long distance word relations, which are unavailable with a traditional n-gram language model. Our

Class-Based n-gram Models of Natural Language

by Peter F. Brown, Peter V. deSouza, Robert L. Mercer, Vincent J. Della Pietra, Jenifer C. Lai - Computational Linguistics , 1992
"... We address the problem of predicting a word from previous words in a sample of text. In particular we discuss n-gram models based on calsses of words. We also discuss several statistical algoirthms for assigning words to classes based on the frequency of their co-occurrence with other words. We find ..."
Abstract - Cited by 986 (5 self) - Add to MetaCart
We address the problem of predicting a word from previous words in a sample of text. In particular we discuss n-gram models based on calsses of words. We also discuss several statistical algoirthms for assigning words to classes based on the frequency of their co-occurrence with other words. We

Discriminative Training and Maximum Entropy Models for Statistical Machine Translation

by Franz Josef Och, Hermann Ney , 2002
"... We present a framework for statistical machine translation of natural languages based on direct maximum entropy models, which contains the widely used source -channel approach as a special case. All knowledge sources are treated as feature functions, which depend on the source language senten ..."
Abstract - Cited by 508 (30 self) - Add to MetaCart
We present a framework for statistical machine translation of natural languages based on direct maximum entropy models, which contains the widely used source -channel approach as a special case. All knowledge sources are treated as feature functions, which depend on the source language

Pig Latin: A Not-So-Foreign Language for Data Processing

by Christopher Olston, Benjamin Reed, Utkarsh Srivastava, Ravi Kumar, Andrew Tomkins
"... There is a growing need for ad-hoc analysis of extremely large data sets, especially at internet companies where innovation critically depends on being able to analyze terabytes of data collected every day. Parallel database products, e.g., Teradata, offer a solution, but are usually prohibitively e ..."
Abstract - Cited by 607 (13 self) - Add to MetaCart
There is a growing need for ad-hoc analysis of extremely large data sets, especially at internet companies where innovation critically depends on being able to analyze terabytes of data collected every day. Parallel database products, e.g., Teradata, offer a solution, but are usually prohibitively

Symbolic Model Checking: 10^20 States and Beyond

by J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, L. J. Hwang , 1992
"... Many different methods have been devised for automatically verifying finite state systems by examining state-graph models of system behavior. These methods all depend on decision procedures that explicitly represent the state space using a list or a table that grows in proportion to the number of st ..."
Abstract - Cited by 758 (41 self) - Add to MetaCart
Many different methods have been devised for automatically verifying finite state systems by examining state-graph models of system behavior. These methods all depend on decision procedures that explicitly represent the state space using a list or a table that grows in proportion to the number

A comparison of event models for Naive Bayes text classification

by Andrew McCallum, Kamal Nigam , 1998
"... Recent work in text classification has used two different first-order probabilistic models for classification, both of which make the naive Bayes assumption. Some use a multi-variate Bernoulli model, that is, a Bayesian Network with no dependencies between words and binary word features (e.g. Larkey ..."
Abstract - Cited by 1025 (26 self) - Add to MetaCart
Recent work in text classification has used two different first-order probabilistic models for classification, both of which make the naive Bayes assumption. Some use a multi-variate Bernoulli model, that is, a Bayesian Network with no dependencies between words and binary word features (e

Incorporating non-local information into information extraction systems by Gibbs sampling

by Jenny Rose Finkel, Trond Grenager, Christopher Manning - IN ACL , 2005
"... Most current statistical natural language processing models use only local features so as to permit dynamic programming in inference, but this makes them unable to fully account for the long distance structure that is prevalent in language use. We show how to solve this dilemma with Gibbs sampling, ..."
Abstract - Cited by 730 (25 self) - Add to MetaCart
Most current statistical natural language processing models use only local features so as to permit dynamic programming in inference, but this makes them unable to fully account for the long distance structure that is prevalent in language use. We show how to solve this dilemma with Gibbs sampling

A Program for Aligning Sentences in Bilingual Corpora

by William A. Gale , Kenneth W. Church , 1993
"... This paper will describe a method and a program (align) for aligning sentences based on a simple statistical model of character lengths. The program uses the fact that longer sentences in one language tend to be translated into longer sentences in the other language, and that shorter sentences tend ..."
Abstract - Cited by 529 (5 self) - Add to MetaCart
This paper will describe a method and a program (align) for aligning sentences based on a simple statistical model of character lengths. The program uses the fact that longer sentences in one language tend to be translated into longer sentences in the other language, and that shorter sentences tend

Multiscalar Processors

by Gurindar S. Sohi, Scott E. Breach, T. N. Vijaykumar - In Proceedings of the 22nd Annual International Symposium on Computer Architecture , 1995
"... Multiscalar processors use a new, aggressive implementation paradigm for extracting large quantities of instruction level parallelism from ordinary high level language programs. A single program is divided into a collection of tasks by a combination of software and hardware. The tasks are distribute ..."
Abstract - Cited by 589 (30 self) - Add to MetaCart
Multiscalar processors use a new, aggressive implementation paradigm for extracting large quantities of instruction level parallelism from ordinary high level language programs. A single program is divided into a collection of tasks by a combination of software and hardware. The tasks

The Alignment Template Approach to Statistical Machine Translation

by Franz Josef Och, Hermann Ney , 2004
"... A phrase-based statistical machine translation approach — the alignment template approach — is described. This translation approach allows for general many-to-many relations between words. Thereby, the context of words is taken into account in the translation model, and local changes in word order f ..."
Abstract - Cited by 480 (26 self) - Add to MetaCart
from source to target language can be learned explicitly. The model is described using a log-linear modeling approach, which is a generalization of the often used source–channel approach. Thereby, the model is easier to extend than classical statistical machine translation systems. We describe
Next 10 →
Results 1 - 10 of 14,821
Powered by: Apache Solr
  • About CiteSeerX
  • Submit and Index Documents
  • Privacy Policy
  • Help
  • Data
  • Source
  • Contact Us

Developed at and hosted by The College of Information Sciences and Technology

© 2007-2019 The Pennsylvania State University