Results 1  10
of
6,183
A HeteroskedasticityConsistent Covariance Matrix Estimator And A Direct Test For Heteroskedasticity
, 1980
"... This paper presents a parameter covariance matrix estimator which is consistent even when the disturbances of a linear regression model are heteroskedastic. This estimator does not depend on a formal model of the structure of the heteroskedasticity. By comparing the elements of the new estimator ..."
Abstract

Cited by 3211 (5 self)
 Add to MetaCart
This paper presents a parameter covariance matrix estimator which is consistent even when the disturbances of a linear regression model are heteroskedastic. This estimator does not depend on a formal model of the structure of the heteroskedasticity. By comparing the elements of the new estimator
Sum Capacity of a Gaussian Vector Broadcast Channel
 IEEE Trans. Inform. Theory
, 2002
"... This paper characterizes the sum capacity of a class of nondegraded Gaussian vectB broadcast channels where a singletransmitter with multiple transmit terminals sends independent information to multiple receivers. Coordinat+[ is allowed among the transmit teminals, but not among the different recei ..."
Abstract

Cited by 279 (21 self)
 Add to MetaCart
receivers. The sum capacity is shown t be a saddlepoint of a Gaussian mu al informat]R game, where a signal player chooses a tansmit covariance matrix to maximize the mutual information, and a noise player chooses a fictitious noise correlation to minimize the mutual information. This result holds fort he
Sequential data assimilation with a nonlinear quasigeostrophic model using Monte Carlo methods to forecast error statistics
 J. Geophys. Res
, 1994
"... . A new sequential data assimilation method is discussed. It is based on forecasting the error statistics using Monte Carlo methods, a better alternative than solving the traditional and computationally extremely demanding approximate error covariance equation used in the extended Kalman filter. The ..."
Abstract

Cited by 800 (23 self)
 Add to MetaCart
covariance equation are avoided because storage and evolution of the error covariance matrix itself are not needed. The results are also better than what is provided by the extended Kalman filter since there is no closure problem and the quality of the forecast error statistics therefore improves. The method
High dimensional graphs and variable selection with the Lasso
 ANNALS OF STATISTICS
, 2006
"... The pattern of zero entries in the inverse covariance matrix of a multivariate normal distribution corresponds to conditional independence restrictions between variables. Covariance selection aims at estimating those structural zeros from data. We show that neighborhood selection with the Lasso is a ..."
Abstract

Cited by 736 (22 self)
 Add to MetaCart
The pattern of zero entries in the inverse covariance matrix of a multivariate normal distribution corresponds to conditional independence restrictions between variables. Covariance selection aims at estimating those structural zeros from data. We show that neighborhood selection with the Lasso
New results in linear filtering and prediction theory
 TRANS. ASME, SER. D, J. BASIC ENG
, 1961
"... A nonlinear differential equation of the Riccati type is derived for the covariance matrix of the optimal filtering error. The solution of this "variance equation " completely specifies the optimal filter for either finite or infinite smoothing intervals and stationary or nonstationary sta ..."
Abstract

Cited by 607 (0 self)
 Add to MetaCart
A nonlinear differential equation of the Riccati type is derived for the covariance matrix of the optimal filtering error. The solution of this "variance equation " completely specifies the optimal filter for either finite or infinite smoothing intervals and stationary or nonstationary
How much should we trust differencesindifferences estimates?
, 2003
"... Most papers that employ DifferencesinDifferences estimation (DD) use many years of data and focus on serially correlated outcomes but ignore that the resulting standard errors are inconsistent. To illustrate the severity of this issue, we randomly generate placebo laws in statelevel data on femal ..."
Abstract

Cited by 828 (1 self)
 Add to MetaCart
into account the autocorrelation of the data) works well when the number of states is large enough. Two corrections based on asymptotic approximation of the variancecovariance matrix work well for moderate numbers of states and one correction that collapses the time series information into a “pre” and “post
On the distribution of the largest eigenvalue in principal components analysis
 ANN. STATIST
, 2001
"... Let x �1 � denote the square of the largest singular value of an n × p matrix X, all of whose entries are independent standard Gaussian variates. Equivalently, x �1 � is the largest principal component variance of the covariance matrix X ′ X, or the largest eigenvalue of a pvariate Wishart distribu ..."
Abstract

Cited by 422 (4 self)
 Add to MetaCart
Let x �1 � denote the square of the largest singular value of an n × p matrix X, all of whose entries are independent standard Gaussian variates. Equivalently, x �1 � is the largest principal component variance of the covariance matrix X ′ X, or the largest eigenvalue of a pvariate Wishart
A Fast Algorithm for the Minimum Covariance Determinant Estimator
 Technometrics
, 1998
"... The minimum covariance determinant (MCD) method of Rousseeuw (1984) is a highly robust estimator of multivariate location and scatter. Its objective is to find h observations (out of n) whose covariance matrix has the lowest determinant. Until now applications of the MCD were hampered by the comput ..."
Abstract

Cited by 346 (15 self)
 Add to MetaCart
The minimum covariance determinant (MCD) method of Rousseeuw (1984) is a highly robust estimator of multivariate location and scatter. Its objective is to find h observations (out of n) whose covariance matrix has the lowest determinant. Until now applications of the MCD were hampered
An autoregressive distributed lag modelling approach to cointegration analysis
 Cambridge University
, 1999
"... This paper examines the use of autoregressive distributed lag (ARDL) models for the analysis of longrun relations when the underlying variables are I(1). It shows that after appropriate augmentation of the order of the ARDL model, the OLS estimators of the shortrun parameters are p Tconsistent wi ..."
Abstract

Cited by 393 (6 self)
 Add to MetaCart
consistent with the asymptotically singular covariance matrix, and the ARDLbased estimators of the longrun coe¢cients are superconsistent, and valid inferences on the longrun parameters can be made using standard normal asymptotic theory. The paper also examines the relationship between the ARDL procedure and the fully modi…ed
Region Covariance: A Fast Descriptor for Detection And Classification
 In Proc. 9th European Conf. on Computer Vision
, 2006
"... We describe a new region descriptor and apply it to two problems, object detection and texture classification. The covariance of dfeatures, e.g., the threedimensional color vector, the norm of first and second derivatives of intensity with respect to x and y, etc., characterizes a region of in ..."
Abstract

Cited by 278 (14 self)
 Add to MetaCart
rapidly using the integral images. The performance of the covariance features is superior to other methods, as it is shown, and large rotations and illumination changes are also absorbed by the covariance matrix.
Results 1  10
of
6,183