Results 1  10
of
101,308
Wallflower: Principles and Practice of Background Maintenance
, 1999
"... Background maintenance is a frequent element of video surveillance systems. We develop Wallflower, a threecomponent system for background maintenance: the pixellevel component performs Wiener filtering to make probabilistic predictions of the expected background; the regionlevel component fills i ..."
Abstract

Cited by 468 (1 self)
 Add to MetaCart
Background maintenance is a frequent element of video surveillance systems. We develop Wallflower, a threecomponent system for background maintenance: the pixellevel component performs Wiener filtering to make probabilistic predictions of the expected background; the regionlevel component fills in homogeneous regions of foreground objects; and the framelevel component detects sudden, global changes in the image and swaps in better approximations of the background. We compare our system with 8 other background subtraction algorithms. Wallflower is shown to outperform previous algorithms by handling a greater set of the difficult situations that can occur. Finally, we analyze the experimental results and propose
GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems
 SIAM J. SCI. STAT. COMPUT
, 1986
"... We present an iterative method for solving linear systems, which has the property ofminimizing at every step the norm of the residual vector over a Krylov subspace. The algorithm is derived from the Arnoldi process for constructing an l2orthogonal basis of Krylov subspaces. It can be considered a ..."
Abstract

Cited by 2046 (40 self)
 Add to MetaCart
We present an iterative method for solving linear systems, which has the property ofminimizing at every step the norm of the residual vector over a Krylov subspace. The algorithm is derived from the Arnoldi process for constructing an l2orthogonal basis of Krylov subspaces. It can be considered
Reversible jump Markov chain Monte Carlo computation and Bayesian model determination
 Biometrika
, 1995
"... Markov chain Monte Carlo methods for Bayesian computation have until recently been restricted to problems where the joint distribution of all variables has a density with respect to some xed standard underlying measure. They have therefore not been available for application to Bayesian model determi ..."
Abstract

Cited by 1330 (24 self)
 Add to MetaCart
determination, where the dimensionality of the parameter vector is typically not xed. This article proposes a new framework for the construction of reversible Markov chain samplers that jump between parameter subspaces of di ering dimensionality, which is exible and entirely constructive. It should therefore
Stochastic Perturbation Theory
, 1988
"... . In this paper classical matrix perturbation theory is approached from a probabilistic point of view. The perturbed quantity is approximated by a firstorder perturbation expansion, in which the perturbation is assumed to be random. This permits the computation of statistics estimating the variatio ..."
Abstract

Cited by 886 (35 self)
 Add to MetaCart
and the eigenvalue problem. Key words. perturbation theory, random matrix, linear system, least squares, eigenvalue, eigenvector, invariant subspace, singular value AMS(MOS) subject classifications. 15A06, 15A12, 15A18, 15A52, 15A60 1. Introduction. Let A be a matrix and let F be a matrix valued function of A
Compressive sampling
, 2006
"... Conventional wisdom and common practice in acquisition and reconstruction of images from frequency data follow the basic principle of the Nyquist density sampling theory. This principle states that to reconstruct an image, the number of Fourier samples we need to acquire must match the desired res ..."
Abstract

Cited by 1427 (15 self)
 Add to MetaCart
Conventional wisdom and common practice in acquisition and reconstruction of images from frequency data follow the basic principle of the Nyquist density sampling theory. This principle states that to reconstruct an image, the number of Fourier samples we need to acquire must match the desired
Quantum Gravity
, 2004
"... We describe the basic assumptions and key results of loop quantum gravity, which is a background independent approach to quantum gravity. The emphasis is on the basic physical principles and how one deduces predictions from them, at a level suitable for physicists in other areas such as string theor ..."
Abstract

Cited by 566 (11 self)
 Add to MetaCart
We describe the basic assumptions and key results of loop quantum gravity, which is a background independent approach to quantum gravity. The emphasis is on the basic physical principles and how one deduces predictions from them, at a level suitable for physicists in other areas such as string
ModelBased Clustering, Discriminant Analysis, and Density Estimation
 JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION
, 2000
"... Cluster analysis is the automated search for groups of related observations in a data set. Most clustering done in practice is based largely on heuristic but intuitively reasonable procedures and most clustering methods available in commercial software are also of this type. However, there is little ..."
Abstract

Cited by 557 (28 self)
 Add to MetaCart
for modelbased clustering that provides a principled statistical approach to these issues. We also show that this can be useful for other problems in multivariate analysis, such as discriminant analysis and multivariate density estimation. We give examples from medical diagnosis, mineeld detection, cluster
Additive Logistic Regression: a Statistical View of Boosting
 Annals of Statistics
, 1998
"... Boosting (Freund & Schapire 1996, Schapire & Singer 1998) is one of the most important recent developments in classification methodology. The performance of many classification algorithms can often be dramatically improved by sequentially applying them to reweighted versions of the input dat ..."
Abstract

Cited by 1719 (25 self)
 Add to MetaCart
data, and taking a weighted majority vote of the sequence of classifiers thereby produced. We show that this seemingly mysterious phenomenon can be understood in terms of well known statistical principles, namely additive modeling and maximum likelihood. For the twoclass problem, boosting can
Convex Analysis
, 1970
"... In this book we aim to present, in a unified framework, a broad spectrum of mathematical theory that has grown in connection with the study of problems of optimization, equilibrium, control, and stability of linear and nonlinear systems. The title Variational Analysis reflects this breadth. For a lo ..."
Abstract

Cited by 5350 (67 self)
 Add to MetaCart
was the exploration of variations around a point, within the bounds imposed by the constraints, in order to help characterize solutions and portray them in terms of ‘variational principles’. Notions of perturbation, approximation and even generalized differentiability were extensively investigated. Variational theory
Probabilistic Visual Learning for Object Representation
, 1996
"... We present an unsupervised technique for visual learning which is based on density estimation in highdimensional spaces using an eigenspace decomposition. Two types of density estimates are derived for modeling the training data: a multivariate Gaussian (for unimodal distributions) and a Mixtureof ..."
Abstract

Cited by 705 (15 self)
 Add to MetaCart
We present an unsupervised technique for visual learning which is based on density estimation in highdimensional spaces using an eigenspace decomposition. Two types of density estimates are derived for modeling the training data: a multivariate Gaussian (for unimodal distributions) and a MixtureofGaussians model (for multimodal distributions). These probability densities are then used to formulate a maximumlikelihood estimation framework for visual search and target detection for automatic object recognition and coding. Our learning technique is applied to the probabilistic visual modeling, detection, recognition, and coding of human faces and nonrigid objects such as hands.
Results 1  10
of
101,308