Results 1 - 10
of
54,725
Maximum likelihood from incomplete data via the EM algorithm
- JOURNAL OF THE ROYAL STATISTICAL SOCIETY, SERIES B
, 1977
"... A broadly applicable algorithm for computing maximum likelihood estimates from incomplete data is presented at various levels of generality. Theory showing the monotone behaviour of the likelihood and convergence of the algorithm is derived. Many examples are sketched, including missing value situat ..."
Abstract
-
Cited by 11972 (17 self)
- Add to MetaCart
situations, applications to grouped, censored or truncated data, finite mixture models, variance component estimation, hyperparameter estimation, iteratively reweighted least squares and factor analysis.
A subordinated stochastic process model with finite variance for speculative prices
- Econometrica
, 1973
"... Thanks are due to Hendrik Houthakker and Christopher Sims, for both encouragement and advice in developing this paper. As usual, all remaining errors are my own. This research was supported by a Harvard Dissertation Fellowship, NSF grant 33-708, and the ..."
Abstract
-
Cited by 561 (1 self)
- Add to MetaCart
Thanks are due to Hendrik Houthakker and Christopher Sims, for both encouragement and advice in developing this paper. As usual, all remaining errors are my own. This research was supported by a Harvard Dissertation Fellowship, NSF grant 33-708, and the
A model for technical inefficiency effects in a stochastic frontier production function for panel data
- Empirical Economics
, 1995
"... Abstract: A stochastic frontier production function is defined for panel data on firms, in which the non-negative technical inetGciency effects are assumed to be a function of firm-specific variables and time. The inefficiency effects are assumed to be independently distributed as truncations of nor ..."
Abstract
-
Cited by 555 (4 self)
- Add to MetaCart
of normal distributions with constant variance, but with means which are a linear function of observable variables. This panel data model is an extension of recently proposed models for inefTiciency effects in stochastic frontiers for cross-sectional data. An empirical application of the model is obtained
Bayesian Analysis of Stochastic Volatility Models
, 1994
"... this article is to develop new methods for inference and prediction in a simple class of stochastic volatility models in which logarithm of conditional volatility follows an autoregressive (AR) times series model. Unlike the autoregressive conditional heteroscedasticity (ARCH) and gener- alized ARCH ..."
Abstract
-
Cited by 601 (26 self)
- Add to MetaCart
this article is to develop new methods for inference and prediction in a simple class of stochastic volatility models in which logarithm of conditional volatility follows an autoregressive (AR) times series model. Unlike the autoregressive conditional heteroscedasticity (ARCH) and gener- alized
Learning Stochastic Logic Programs
, 2000
"... Stochastic Logic Programs (SLPs) have been shown to be a generalisation of Hidden Markov Models (HMMs), stochastic context-free grammars, and directed Bayes' nets. A stochastic logic program consists of a set of labelled clauses p:C where p is in the interval [0,1] and C is a first-order r ..."
Abstract
-
Cited by 1194 (81 self)
- Add to MetaCart
Stochastic Logic Programs (SLPs) have been shown to be a generalisation of Hidden Markov Models (HMMs), stochastic context-free grammars, and directed Bayes' nets. A stochastic logic program consists of a set of labelled clauses p:C where p is in the interval [0,1] and C is a first
Stochastic volatility: likelihood inference and comparison with ARCH models
- Review of Economic Studies
, 1998
"... In this paper, Markov chain Monte Carlo sampling methods are exploited to provide a unified, practical likelihood-based framework for the analysis of stochastic volatility models. A highly effective method is developed that samples all the unobserved volatilities at once using an approximating offse ..."
Abstract
-
Cited by 592 (40 self)
- Add to MetaCart
In this paper, Markov chain Monte Carlo sampling methods are exploited to provide a unified, practical likelihood-based framework for the analysis of stochastic volatility models. A highly effective method is developed that samples all the unobserved volatilities at once using an approximating
The Valuation of Options for Alternative Stochastic Processes
- Journal of Financial Economics
, 1976
"... This paper examines the structure of option valuation problems and develops a new technique for their solution. It also introduces several jump and diffusion processes which have nol been used in previous models. The technique is applied lo these processes to find explicit option valuation formulas, ..."
Abstract
-
Cited by 679 (5 self)
- Add to MetaCart
This paper examines the structure of option valuation problems and develops a new technique for their solution. It also introduces several jump and diffusion processes which have nol been used in previous models. The technique is applied lo these processes to find explicit option valuation formulas
Contour Tracking By Stochastic Propagation of Conditional Density
, 1996
"... . In Proc. European Conf. Computer Vision, 1996, pp. 343--356, Cambridge, UK The problem of tracking curves in dense visual clutter is a challenging one. Trackers based on Kalman filters are of limited use; because they are based on Gaussian densities which are unimodal, they cannot represent s ..."
Abstract
-
Cited by 661 (23 self)
- Add to MetaCart
simultaneous alternative hypotheses. Extensions to the Kalman filter to handle multiple data associations work satisfactorily in the simple case of point targets, but do not extend naturally to continuous curves. A new, stochastic algorithm is proposed here, the Condensation algorithm --- Conditional
Stochastic relaxation, Gibbs distributions and the Bayesian restoration of images.
- IEEE Trans. Pattern Anal. Mach. Intell.
, 1984
"... Abstract-We make an analogy between images and statistical mechanics systems. Pixel gray levels and the presence and orientation of edges are viewed as states of atoms or molecules in a lattice-like physical system. The assignment of an energy function in the physical system determines its Gibbs di ..."
Abstract
-
Cited by 5126 (1 self)
- Add to MetaCart
distribution. Because of the Gibbs distribution, Markov random field (MRF) equivalence, this assignment also determines an MRF image model. The energy function is a more convenient and natural mechanism for embodying picture attributes than are the local characteristics of the MRF. For a range of degradation
Results 1 - 10
of
54,725