Results 1  10
of
415,158
Stochastic Subgradient Methods
"... Stochastic subgradient methods play an important role in machine learning. We introduced the concepts of subgradient methods and stochastic subgradient methods in this project, discussed their convergence conditions as well as the strong and weak points against their competitors. We demonstrated the ..."
Abstract
 Add to MetaCart
Stochastic subgradient methods play an important role in machine learning. We introduced the concepts of subgradient methods and stochastic subgradient methods in this project, discussed their convergence conditions as well as the strong and weak points against their competitors. We demonstrated
Stochastic Subgradient Methods
, 2007
"... Suppose f: R n → R is a convex function. We say that a random vector ˜g ∈ R n is a noisy (unbiased) subgradient of f at x ∈ dom f if g = E ˜g ∈ ∂f(x), i.e., we have f(z) ≥ f(x) + (E ˜g) T (z − x) for all z. Thus, ˜g is a noisy unbiased subgradient of f at x if it can be written as ˜g = g + v, where ..."
Abstract

Cited by 3 (0 self)
 Add to MetaCart
can represent (presumably small) error in computing a true subgradient, error that arises in Monte Carlo evaluation of a function defined as an expected value, or measurement error. Some references for stochastic subgradient methods are [Sho98, §2.4], [Pol87, Chap. 5]. Some books on stochastic
A simpler approach to obtaining an O(1/t) convergence rate for the projected stochastic subgradient method,” http://arxiv.org/abs/1212.2002
, 2012
"... method ..."
Adaptive Subgradient Methods for Online Learning and Stochastic Optimization
, 2010
"... Stochastic subgradient methods are widely used, well analyzed, and constitute effective tools for optimization and online learning. Stochastic gradient methods ’ popularity and appeal are largely due to their simplicity, as they largely follow predetermined procedural schemes. However, most common s ..."
Abstract

Cited by 287 (3 self)
 Add to MetaCart
Stochastic subgradient methods are widely used, well analyzed, and constitute effective tools for optimization and online learning. Stochastic gradient methods ’ popularity and appeal are largely due to their simplicity, as they largely follow predetermined procedural schemes. However, most common
Pegasos: Primal Estimated subgradient solver for SVM
"... We describe and analyze a simple and effective stochastic subgradient descent algorithm for solving the optimization problem cast by Support Vector Machines (SVM). We prove that the number of iterations required to obtain a solution of accuracy ɛ is Õ(1/ɛ), where each iteration operates on a singl ..."
Abstract

Cited by 531 (21 self)
 Add to MetaCart
We describe and analyze a simple and effective stochastic subgradient descent algorithm for solving the optimization problem cast by Support Vector Machines (SVM). We prove that the number of iterations required to obtain a solution of accuracy ɛ is Õ(1/ɛ), where each iteration operates on a
Stochastic Perturbation Theory
, 1988
"... . In this paper classical matrix perturbation theory is approached from a probabilistic point of view. The perturbed quantity is approximated by a firstorder perturbation expansion, in which the perturbation is assumed to be random. This permits the computation of statistics estimating the variatio ..."
Abstract

Cited by 886 (35 self)
 Add to MetaCart
. In this paper classical matrix perturbation theory is approached from a probabilistic point of view. The perturbed quantity is approximated by a firstorder perturbation expansion, in which the perturbation is assumed to be random. This permits the computation of statistics estimating the variation in the perturbed quantity. Up to the higherorder terms that are ignored in the expansion, these statistics tend to be more realistic than perturbation bounds obtained in terms of norms. The technique is applied to a number of problems in matrix perturbation theory, including least squares and the eigenvalue problem. Key words. perturbation theory, random matrix, linear system, least squares, eigenvalue, eigenvector, invariant subspace, singular value AMS(MOS) subject classifications. 15A06, 15A12, 15A18, 15A52, 15A60 1. Introduction. Let A be a matrix and let F be a matrix valued function of A. Two principal problems of matrix perturbation theory are the following. Given a matrix E, pr...
Bayesian Analysis of Stochastic Volatility Models
, 1994
"... this article is to develop new methods for inference and prediction in a simple class of stochastic volatility models in which logarithm of conditional volatility follows an autoregressive (AR) times series model. Unlike the autoregressive conditional heteroscedasticity (ARCH) and gener alized ARCH ..."
Abstract

Cited by 588 (25 self)
 Add to MetaCart
this article is to develop new methods for inference and prediction in a simple class of stochastic volatility models in which logarithm of conditional volatility follows an autoregressive (AR) times series model. Unlike the autoregressive conditional heteroscedasticity (ARCH) and gener alized
Stochastic volatility: likelihood inference and comparison with ARCH models
 Review of Economic Studies
, 1998
"... In this paper, Markov chain Monte Carlo sampling methods are exploited to provide a unified, practical likelihoodbased framework for the analysis of stochastic volatility models. A highly effective method is developed that samples all the unobserved volatilities at once using an approximating offse ..."
Abstract

Cited by 582 (41 self)
 Add to MetaCart
In this paper, Markov chain Monte Carlo sampling methods are exploited to provide a unified, practical likelihoodbased framework for the analysis of stochastic volatility models. A highly effective method is developed that samples all the unobserved volatilities at once using an approximating
The Valuation of Options for Alternative Stochastic Processes
 Journal of Financial Economics
, 1976
"... This paper examines the structure of option valuation problems and develops a new technique for their solution. It also introduces several jump and diffusion processes which have nol been used in previous models. The technique is applied lo these processes to find explicit option valuation formulas, ..."
Abstract

Cited by 661 (4 self)
 Add to MetaCart
This paper examines the structure of option valuation problems and develops a new technique for their solution. It also introduces several jump and diffusion processes which have nol been used in previous models. The technique is applied lo these processes to find explicit option valuation formulas, and solutions to some previously unsolved problems involving the pricing ofsecurities with payouts and potential bankruptcy. 1.
Pushing the Envelope: Planning, Propositional Logic, and Stochastic Search
, 1996
"... Planning is a notoriously hard combinatorial search problem. In many interesting domains, current planning algorithms fail to scale up gracefully. By combining a general, stochastic search algorithm and appropriate problem encodings based on propositional logic, we are able to solve hard planning pr ..."
Abstract

Cited by 579 (32 self)
 Add to MetaCart
problems many times faster than the best current planning systems. Although stochastic methods have been shown to be very e ective on a wide range of scheduling problems, this is the rst demonstration of its power on truly challenging classical planning instances. This work also provides a new perspective
Results 1  10
of
415,158