Results 1 - 10
of
9,115
Errors in Statistical Assumptions, Effects of
"... however, and it can also be measured for changes to assumptions in non-Bayesian inference. There have been some successful attempts to take considerations of sensitivity to assumptions into account explicitly in the formulation of Bayesian models. Model uncertainty (see Draper 1995) and Bayesian mod ..."
Abstract
- Add to MetaCart
however, and it can also be measured for changes to assumptions in non-Bayesian inference. There have been some successful attempts to take considerations of sensitivity to assumptions into account explicitly in the formulation of Bayesian models. Model uncertainty (see Draper 1995) and Bayesian
The Sensitivity of an Empirical Model of Married Women's Hours of Work to Economic and Statistical Assumptions," unpublished Ph.D. Dissertation,
, 1984
"... ..."
Blind Signal Separation: Statistical Principles
, 2003
"... Blind signal separation (BSS) and independent component analysis (ICA) are emerging techniques of array processing and data analysis, aiming at recovering unobserved signals or `sources' from observed mixtures (typically, the output of an array of sensors), exploiting only the assumption of mut ..."
Abstract
-
Cited by 529 (4 self)
- Add to MetaCart
of mutual independence between the signals. The weakness of the assumptions makes it a powerful approach but requires to venture beyond familiar second order statistics. The objective of this paper is to review some of the approaches that have been recently developed to address this exciting problem
Accurate Methods for the Statistics of Surprise and Coincidence
- COMPUTATIONAL LINGUISTICS
, 1993
"... Much work has been done on the statistical analysis of text. In some cases reported in the literature, inappropriate statistical methods have been used, and statistical significance of results have not been addressed. In particular, asymptotic normality assumptions have often been used unjustifiably ..."
Abstract
-
Cited by 1057 (1 self)
- Add to MetaCart
Much work has been done on the statistical analysis of text. In some cases reported in the literature, inappropriate statistical methods have been used, and statistical significance of results have not been addressed. In particular, asymptotic normality assumptions have often been used
Self-Similarity Through High-Variability: Statistical Analysis of Ethernet LAN Traffic at the Source Level
- IEEE/ACM TRANSACTIONS ON NETWORKING
, 1997
"... A number of recent empirical studies of traffic measurements from a variety of working packet networks have convincingly demonstrated that actual network traffic is self-similar or long-range dependent in nature (i.e., bursty over a wide range of time scales) -- in sharp contrast to commonly made tr ..."
Abstract
-
Cited by 743 (24 self)
- Add to MetaCart
traffic modeling assumptions. In this paper, we provide a plausible physical explanation for the occurrence of self-similarity in LAN traffic. Our explanation is based on new convergence results for processes that exhibit high variability (i.e., infinite variance) and is supported by detailed statistical
The Nonstochastic Multiarmed Bandit Problem
- SIAM JOURNAL OF COMPUTING
, 2002
"... In the multiarmed bandit problem, a gambler must decide which arm of K non-identical slot machines to play in a sequence of trials so as to maximize his reward. This classical problem has received much attention because of the simple model it provides of the trade-off between exploration (trying out ..."
Abstract
-
Cited by 491 (34 self)
- Add to MetaCart
out each arm to find the best one) and exploitation (playing the arm believed to give the best payoff). Past solutions for the bandit problem have almost always relied on assumptions about the statistics of the slot machines. In this work, we make no statistical assumptions whatsoever about the nature
Fast and robust fixed-point algorithms for independent component analysis
- IEEE TRANS. NEURAL NETW
, 1999
"... Independent component analysis (ICA) is a statistical method for transforming an observed multidimensional random vector into components that are statistically as independent from each other as possible. In this paper, we use a combination of two different approaches for linear ICA: Comon’s informat ..."
Abstract
-
Cited by 884 (34 self)
- Add to MetaCart
, and estimation of individual independent components as projection pursuit directions. The statistical properties of the estimators based on such contrast functions are analyzed under the assumption of the linear mixture model, and it is shown how to choose contrast functions that are robust and/or of minimum
A Language Modeling Approach to Information Retrieval
, 1998
"... Models of document indexing and document retrieval have been extensively studied. The integration of these two classes of models has been the goal of several researchers but it is a very difficult problem. We argue that much of the reason for this is the lack of an adequate indexing model. This sugg ..."
Abstract
-
Cited by 1154 (42 self)
- Add to MetaCart
. This suggests that perhaps a better indexing model would help solve the problem. However, we feel that making unwarranted parametric assumptions will not lead to better retrieval performance. Furthermore, making prior assumptions about the similarity of documents is not warranted either. Instead, we propose
Consistency of spectral clustering
, 2004
"... Consistency is a key property of statistical algorithms, when the data is drawn from some underlying probability distribution. Surprisingly, despite decades of work, little is known about consistency of most clustering algorithms. In this paper we investigate consistency of a popular family of spe ..."
Abstract
-
Cited by 572 (15 self)
- Add to MetaCart
Consistency is a key property of statistical algorithms, when the data is drawn from some underlying probability distribution. Surprisingly, despite decades of work, little is known about consistency of most clustering algorithms. In this paper we investigate consistency of a popular family
Results 1 - 10
of
9,115