• Documents
  • Authors
  • Tables
  • Log in
  • Sign up
  • MetaCart
  • DMCA
  • Donate

CiteSeerX logo

Advanced Search Include Citations

Tools

Sorted by:
Try your query at:
Semantic Scholar Scholar Academic
Google Bing DBLP
Results 1 - 10 of 20,314
Next 10 →

Designing the User Interface for Multimodal Speech and Pen-based Gesture Applications: State-of-the-Art Systems and Future Research Directions

by Sharon Oviatt, Phil Cohen, Lizhong Wu, John Vergo, Lisbeth Duncan, Jim Larson, David Ferro , 2000
"... The growing interest in multimodal interface design is inspired in large part by the goals of supporting more transparent, flexible, efficient, and powerfully expressive means of humancomputer interaction than in the past. Multimodal interfaces are expected to support a wider range of diverse applic ..."
Abstract - Cited by 150 (15 self) - Add to MetaCart
early and late fusion approaches, and the new hybrid symbolic/statistical approach. We also describe a diverse collection of state-of-the-art multimodal systems that process users' spoken and gestural input. These applications range from map-based and virtual reality systems for engaging

Toward the next generation of recommender systems: A survey of the state-of-the-art and possible extensions

by Gediminas Adomavicius, Alexander Tuzhilin - IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING , 2005
"... This paper presents an overview of the field of recommender systems and describes the current generation of recommendation methods that are usually classified into the following three main categories: content-based, collaborative, and hybrid recommendation approaches. This paper also describes vario ..."
Abstract - Cited by 1490 (23 self) - Add to MetaCart
This paper presents an overview of the field of recommender systems and describes the current generation of recommendation methods that are usually classified into the following three main categories: content-based, collaborative, and hybrid recommendation approaches. This paper also describes

Incorporating non-local information into information extraction systems by Gibbs sampling

by Jenny Rose Finkel, Trond Grenager, Christopher Manning - IN ACL , 2005
"... Most current statistical natural language processing models use only local features so as to permit dynamic programming in inference, but this makes them unable to fully account for the long distance structure that is prevalent in language use. We show how to solve this dilemma with Gibbs sampling, ..."
Abstract - Cited by 730 (25 self) - Add to MetaCart
use this technique to augment an existing CRF-based information extraction system with long-distance dependency models, enforcing label consistency and extraction template consistency constraints. This technique results in an error reduction of up to 9 % over state-of-the-art systems on two

Hierarchical phrase-based translation

by David Chiang - Computational Linguistics , 2007
"... We present a statistical machine translation model that uses hierarchical phrases—phrases that contain subphrases. The model is formally a synchronous context-free grammar but is learned from a parallel text without any syntactic annotations. Thus it can be seen as combining fundamental ideas from b ..."
Abstract - Cited by 597 (9 self) - Add to MetaCart
the Alignment Template System, a state-of-the-art phrasebased system. 1.

Image retrieval: Current techniques, promising directions and open issues

by Yong Rui, Thomas S. Huang - Journal of Visual Communication and Image Representation , 1999
"... This paper provides a comprehensive survey of the technical achievements in the research area of image retrieval, especially content-based image retrieval, an area that has been so active and prosperous in the past few years. The survey includes 100+ papers covering the research aspects of image fea ..."
Abstract - Cited by 507 (15 self) - Add to MetaCart
feature representation and extraction, multidimensional indexing, and system design, three of the fundamental bases of content-based image retrieval. Furthermore, based on the state-of-the-art technology available now and the demand from real-world applications, open research issues are identified

Object Detection with Discriminatively Trained Part Based Models

by Pedro F. Felzenszwalb, Ross B. Girshick, David McAllester, Deva Ramanan
"... We describe an object detection system based on mixtures of multiscale deformable part models. Our system is able to represent highly variable object classes and achieves state-of-the-art results in the PASCAL object detection challenges. While deformable part models have become quite popular, their ..."
Abstract - Cited by 1422 (49 self) - Add to MetaCart
We describe an object detection system based on mixtures of multiscale deformable part models. Our system is able to represent highly variable object classes and achieves state-of-the-art results in the PASCAL object detection challenges. While deformable part models have become quite popular

Integrating classification and association rule mining

by Bing Liu, Wynne Hsu, Yiming Ma - In Proc of KDD , 1998
"... Classification rule mining aims to discover a small set of rules in the database that forms an accurate classifier. Association rule mining finds all the rules existing in the database that satisfy some minimum support and minimum confidence constraints. For association rule mining, the target of di ..."
Abstract - Cited by 578 (21 self) - Add to MetaCart
). An efficient algorithm is also given for building a classifier based on the set of discovered CARs. Experimental results show that the classifier built this way is, in general, more accurate than that produced by the state-of-the-art classification system C4.5. In addition, this integration helps to solve a

Compressive sensing

by Richard Baraniuk - IEEE Signal Processing Mag , 2007
"... The Shannon/Nyquist sampling theorem tells us that in order to not lose information when uniformly sampling a signal we must sample at least two times faster than its bandwidth. In many applications, including digital image and video cameras, the Nyquist rate can be so high that we end up with too m ..."
Abstract - Cited by 696 (62 self) - Add to MetaCart
many samples and must compress in order to store or transmit them. In other applications, including imaging systems (medical scanners, radars) and high-speed analog-to-digital converters, increasing the sampling rate or density beyond the current state-of-the-art is very expensive. In this lecture, we

Image Quality Assessment: From Error Visibility to Structural Similarity

by Zhou Wang, Alan C. Bovik, Hamid R. Sheikh, Eero P. Simoncelli - IEEE TRANSACTIONS ON IMAGE PROCESSING , 2004
"... Objective methods for assessing perceptual image quality have traditionally attempted to quantify the visibility of errors between a distorted image and a reference image using a variety of known properties of the human visual system. Under the assumption that human visual perception is highly adapt ..."
Abstract - Cited by 1499 (114 self) - Add to MetaCart
of intuitive examples, as well as comparison to both subjective ratings and state-of-the-art objective methods on a database of images compressed with JPEG and JPEG2000.

A hierarchical phrase-based model for statistical machine translation

by David Chiang - IN ACL , 2005
"... We present a statistical phrase-based translation model that uses hierarchical phrases— phrases that contain subphrases. The model is formally a synchronous context-free grammar but is learned from a bitext without any syntactic information. Thus it can be seen as a shift to the formal machinery of ..."
Abstract - Cited by 491 (12 self) - Add to MetaCart
of syntaxbased translation systems without any linguistic commitment. In our experiments using BLEU as a metric, the hierarchical phrasebased model achieves a relative improvement of 7.5 % over Pharaoh, a state-of-the-art phrase-based system.
Next 10 →
Results 1 - 10 of 20,314
Powered by: Apache Solr
  • About CiteSeerX
  • Submit and Index Documents
  • Privacy Policy
  • Help
  • Data
  • Source
  • Contact Us

Developed at and hosted by The College of Information Sciences and Technology

© 2007-2019 The Pennsylvania State University