Results 1  10
of
1,679,404
Distributed Snapshots: Determining Global States of Distributed Systems
 ACM TRANSACTIONS ON COMPUTER SYSTEMS
, 1985
"... This paper presents an algorithm by which a process in a distributed system determines a global state of the system during a computation. Many problems in distributed systems can be cast in terms of the problem of detecting global states. For instance, the global state detection algorithm helps to s ..."
Abstract

Cited by 1208 (6 self)
 Add to MetaCart
This paper presents an algorithm by which a process in a distributed system determines a global state of the system during a computation. Many problems in distributed systems can be cast in terms of the problem of detecting global states. For instance, the global state detection algorithm helps
Virtual time and global states of distributed systems.
 Proc. Workshop on Parallel and Distributed Algorithms,
, 1989
"... Abstract A distributed system can be characterized by the fact that the global state is distributed and that a common time base does not exist. However, the notion of time is an important concept in every day life of our decentralized \ r eal world" and helps to solve problems like getting a c ..."
Abstract

Cited by 744 (5 self)
 Add to MetaCart
Abstract A distributed system can be characterized by the fact that the global state is distributed and that a common time base does not exist. However, the notion of time is an important concept in every day life of our decentralized \ r eal world" and helps to solve problems like getting a
Knowledge and Common Knowledge in a Distributed Environment
 Journal of the ACM
, 1984
"... : Reasoning about knowledge seems to play a fundamental role in distributed systems. Indeed, such reasoning is a central part of the informal intuitive arguments used in the design of distributed protocols. Communication in a distributed system can be viewed as the act of transforming the system&apo ..."
Abstract

Cited by 578 (55 self)
 Add to MetaCart
's state of knowledge. This paper presents a general framework for formalizing and reasoning about knowledge in distributed systems. We argue that states of knowledge of groups of processors are useful concepts for the design and analysis of distributed protocols. In particular, distributed knowledge
Stochastic relaxation, Gibbs distributions and the Bayesian restoration of images.
 IEEE Trans. Pattern Anal. Mach. Intell.
, 1984
"... AbstractWe make an analogy between images and statistical mechanics systems. Pixel gray levels and the presence and orientation of edges are viewed as states of atoms or molecules in a latticelike physical system. The assignment of an energy function in the physical system determines its Gibbs di ..."
Abstract

Cited by 5126 (1 self)
 Add to MetaCart
system isolates low energy states ("annealing"), or what is the same thing, the most probable states under the Gibbs distribution. The analogous operation under the posterior distribution yields the maximum a posteriori (MAP) estimate of the image given the degraded observations. The result
Implementing FaultTolerant Services Using the State Machine Approach: A Tutorial
 ACM COMPUTING SURVEYS
, 1990
"... The state machine approach is a general method for implementing faulttolerant services in distributed systems. This paper reviews the approach and describes protocols for two different failure modelsByzantine and failstop. System reconfiguration techniques for removing faulty components and i ..."
Abstract

Cited by 975 (9 self)
 Add to MetaCart
The state machine approach is a general method for implementing faulttolerant services in distributed systems. This paper reviews the approach and describes protocols for two different failure modelsByzantine and failstop. System reconfiguration techniques for removing faulty components
Consistent hashing and random trees: Distributed caching protocols for relieving hot spots on the World Wide Web
 IN PROC. 29TH ACM SYMPOSIUM ON THEORY OF COMPUTING (STOC
, 1997
"... We describe a family of caching protocols for distributed networks that can be used to decrease or eliminate the occurrence of hot spots in the network. Our protocols are particularly designed for use with very large networks such as the Internet, where delays caused by hot spots can be severe, and ..."
Abstract

Cited by 699 (10 self)
 Add to MetaCart
We describe a family of caching protocols for distributed networks that can be used to decrease or eliminate the occurrence of hot spots in the network. Our protocols are particularly designed for use with very large networks such as the Internet, where delays caused by hot spots can be severe
Exact Sampling with Coupled Markov Chains and Applications to Statistical Mechanics
, 1996
"... For many applications it is useful to sample from a finite set of objects in accordance with some particular distribution. One approach is to run an ergodic (i.e., irreducible aperiodic) Markov chain whose stationary distribution is the desired distribution on this set; after the Markov chain has ..."
Abstract

Cited by 543 (13 self)
 Add to MetaCart
has run for M steps, with M sufficiently large, the distribution governing the state of the chain approximates the desired distribution. Unfortunately it can be difficult to determine how large M needs to be. We describe a simple variant of this method that determines on its own when to stop
A Security Architecture for Computational Grids
, 1998
"... Stateoftheart and emerging scientific applications require fast access to large quantities of data and commensurately fast computational resources. Both resources and data are often distributed in a widearea network with components administered locally and independently. Computations may involve ..."
Abstract

Cited by 568 (47 self)
 Add to MetaCart
Stateoftheart and emerging scientific applications require fast access to large quantities of data and commensurately fast computational resources. Both resources and data are often distributed in a widearea network with components administered locally and independently. Computations may
Maximum entropy markov models for information extraction and segmentation
, 2000
"... Hidden Markov models (HMMs) are a powerful probabilistic tool for modeling sequential data, and have been applied with success to many textrelated tasks, such as partofspeech tagging, text segmentation and information extraction. In these cases, the observations are usually modeled as multinomial ..."
Abstract

Cited by 561 (18 self)
 Add to MetaCart
as multinomial distributions over a discrete vocabulary, and the HMM parameters are set to maximize the likelihood of the observations. This paper presents a new Markovian sequence model, closely related to HMMs, that allows observations to be represented as arbitrary overlapping features (such as word
On Sequential Monte Carlo Sampling Methods for Bayesian Filtering
 STATISTICS AND COMPUTING
, 2000
"... In this article, we present an overview of methods for sequential simulation from posterior distributions. These methods are of particular interest in Bayesian filtering for discrete time dynamic models that are typically nonlinear and nonGaussian. A general importance sampling framework is develop ..."
Abstract

Cited by 1051 (76 self)
 Add to MetaCart
been employed in the deterministic filtering literature; these lead to very effective importance distributions. Furthermore we describe a method which uses RaoBlackwellisation in order to take advantage of the analytic structure present in some important classes of statespace models. In a final
Results 1  10
of
1,679,404