Results 1  10
of
16,090
Convex Analysis
, 1970
"... In this book we aim to present, in a unified framework, a broad spectrum of mathematical theory that has grown in connection with the study of problems of optimization, equilibrium, control, and stability of linear and nonlinear systems. The title Variational Analysis reflects this breadth. For a lo ..."
Abstract

Cited by 5411 (68 self)
 Add to MetaCart
In this book we aim to present, in a unified framework, a broad spectrum of mathematical theory that has grown in connection with the study of problems of optimization, equilibrium, control, and stability of linear and nonlinear systems. The title Variational Analysis reflects this breadth. For a
Exact Matrix Completion via Convex Optimization
, 2008
"... We consider a problem of considerable practical interest: the recovery of a data matrix from a sampling of its entries. Suppose that we observe m entries selected uniformly at random from a matrix M. Can we complete the matrix and recover the entries that we have not seen? We show that one can perfe ..."
Abstract

Cited by 873 (26 self)
 Add to MetaCart
by solving a simple convex optimization program. This program finds the matrix with minimum nuclear norm that fits the data. The condition above assumes that the rank is not too large. However, if one replaces the 1.2 exponent with 1.25, then the result holds for all values of the rank. Similar results hold
Global Optimization with Polynomials and the Problem of Moments
 SIAM JOURNAL ON OPTIMIZATION
, 2001
"... We consider the problem of finding the unconstrained global minimum of a realvalued polynomial p(x) : R R, as well as the global minimum of p(x), in a compact set K defined by polynomial inequalities. It is shown that this problem reduces to solving an (often finite) sequence of convex linear ma ..."
Abstract

Cited by 577 (48 self)
 Add to MetaCart
We consider the problem of finding the unconstrained global minimum of a realvalued polynomial p(x) : R R, as well as the global minimum of p(x), in a compact set K defined by polynomial inequalities. It is shown that this problem reduces to solving an (often finite) sequence of convex linear
Just Relax: Convex Programming Methods for Identifying Sparse Signals in Noise
, 2006
"... This paper studies a difficult and fundamental problem that arises throughout electrical engineering, applied mathematics, and statistics. Suppose that one forms a short linear combination of elementary signals drawn from a large, fixed collection. Given an observation of the linear combination that ..."
Abstract

Cited by 483 (2 self)
 Add to MetaCart
. This paper studies a method called convex relaxation, which attempts to recover the ideal sparse signal by solving a convex program. This approach is powerful because the optimization can be completed in polynomial time with standard scientific software. The paper provides general conditions which ensure
Robust convex optimization
 Mathematics of Operations Research
, 1998
"... We study convex optimization problems for which the data is not specified exactly and it is only known to belong to a given uncertainty set U, yet the constraints must hold for all possible values of the data from U. The ensuing optimization problem is called robust optimization. In this paper we la ..."
Abstract

Cited by 416 (21 self)
 Add to MetaCart
We study convex optimization problems for which the data is not specified exactly and it is only known to belong to a given uncertainty set U, yet the constraints must hold for all possible values of the data from U. The ensuing optimization problem is called robust optimization. In this paper we
Fibonacci Heaps and Their Uses in Improved Network optimization algorithms
, 1987
"... In this paper we develop a new data structure for implementing heaps (priority queues). Our structure, Fibonacci heaps (abbreviated Fheaps), extends the binomial queues proposed by Vuillemin and studied further by Brown. Fheaps support arbitrary deletion from an nitem heap in qlogn) amortized tim ..."
Abstract

Cited by 739 (18 self)
 Add to MetaCart
time and all other standard heap operations in o ( 1) amortized time. Using Fheaps we are able to obtain improved running times for several network optimization algorithms. In particular, we obtain the following worstcase bounds, where n is the number of vertices and m the number of edges
A firstorder primaldual algorithm for convex problems with applications to imaging
, 2010
"... In this paper we study a firstorder primaldual algorithm for convex optimization problems with known saddlepoint structure. We prove convergence to a saddlepoint with rate O(1/N) in finite dimensions, which is optimal for the complete class of nonsmooth problems we are considering in this paper ..."
Abstract

Cited by 436 (20 self)
 Add to MetaCart
In this paper we study a firstorder primaldual algorithm for convex optimization problems with known saddlepoint structure. We prove convergence to a saddlepoint with rate O(1/N) in finite dimensions, which is optimal for the complete class of nonsmooth problems we are considering
Optimally sparse representation in general (nonorthogonal) dictionaries via ℓ¹ minimization
 PROC. NATL ACAD. SCI. USA 100 2197–202
, 2002
"... Given a ‘dictionary’ D = {dk} of vectors dk, we seek to represent a signal S as a linear combination S = ∑ k γ(k)dk, with scalar coefficients γ(k). In particular, we aim for the sparsest representation possible. In general, this requires a combinatorial optimization process. Previous work considered ..."
Abstract

Cited by 633 (38 self)
 Add to MetaCart
optimization problem: specifically, minimizing the ℓ¹ norm of the coefficients γ. In this paper, we obtain parallel results in a more general setting, where the dictionary D can arise from two or several bases, frames, or even less structured systems. We introduce the Spark, ameasure of linear dependence
A Singular Value Thresholding Algorithm for Matrix Completion
, 2008
"... This paper introduces a novel algorithm to approximate the matrix with minimum nuclear norm among all matrices obeying a set of convex constraints. This problem may be understood as the convex relaxation of a rank minimization problem, and arises in many important applications as in the task of reco ..."
Abstract

Cited by 555 (22 self)
 Add to MetaCart
This paper introduces a novel algorithm to approximate the matrix with minimum nuclear norm among all matrices obeying a set of convex constraints. This problem may be understood as the convex relaxation of a rank minimization problem, and arises in many important applications as in the task
Object Detection with Discriminatively Trained Part Based Models
"... We describe an object detection system based on mixtures of multiscale deformable part models. Our system is able to represent highly variable object classes and achieves stateoftheart results in the PASCAL object detection challenges. While deformable part models have become quite popular, their ..."
Abstract

Cited by 1422 (49 self)
 Add to MetaCart
is a reformulation of MISVM in terms of latent variables. A latent SVM is semiconvex and the training problem becomes convex once latent information is specified for the positive examples. This leads to an iterative training algorithm that alternates between fixing latent values for positive examples
Results 1  10
of
16,090