Results 11 - 20
of
18,084
Least angle regression
, 2004
"... The purpose of model selection algorithms such as All Subsets, Forward Selection and Backward Elimination is to choose a linear model on the basis of the same set of data to which the model will be applied. Typically we have available a large collection of possible covariates from which we hope to s ..."
Abstract
-
Cited by 1326 (37 self)
- Add to MetaCart
implements the Lasso, an attractive version of ordinary least squares that constrains the sum of the absolute regression coefficients; the LARS modification calculates all possible Lasso estimates for a given problem, using an order of magnitude less computer time than previous methods. (2) A different LARS
Power-law distributions in empirical data
- ISSN 00361445. doi: 10.1137/ 070710111. URL http://dx.doi.org/10.1137/070710111
, 2009
"... Power-law distributions occur in many situations of scientific interest and have significant consequences for our understanding of natural and man-made phenomena. Unfortunately, the empirical detection and characterization of power laws is made difficult by the large fluctuations that occur in the t ..."
Abstract
-
Cited by 607 (7 self)
- Add to MetaCart
in the tail of the distribution. In particular, standard methods such as least-squares fitting are known to produce systematically biased estimates of parameters for power-law distributions and should not be used in most circumstances. Here we describe statistical techniques for making accurate parameter
Gradient projection for sparse reconstruction: Application to compressed sensing and other inverse problems
- IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING
, 2007
"... Many problems in signal processing and statistical inference involve finding sparse solutions to under-determined, or ill-conditioned, linear systems of equations. A standard approach consists in minimizing an objective function which includes a quadratic (squared ℓ2) error term combined with a spa ..."
Abstract
-
Cited by 539 (17 self)
- Add to MetaCart
Many problems in signal processing and statistical inference involve finding sparse solutions to under-determined, or ill-conditioned, linear systems of equations. A standard approach consists in minimizing an objective function which includes a quadratic (squared ℓ2) error term combined with a
An extensive empirical study of feature selection metrics for text classification
- J. of Machine Learning Research
, 2003
"... Machine learning for text classification is the cornerstone of document categorization, news filtering, document routing, and personalization. In text domains, effective feature selection is essential to make the learning task efficient and more accurate. This paper presents an empirical comparison ..."
Abstract
-
Cited by 496 (15 self)
- Add to MetaCart
in different situations. The results reveal that a new feature selection metric we call ‘Bi-Normal Separation ’ (BNS), outperformed the others by a substantial margin in most situations. This margin widened in tasks with high class skew, which is rampant in text classification problems and is particularly
ON THE DEGENERACIES OF THE MASS-SQUARED DIFFERENCES FOR THREE-NEUTRINO OSCILLATIONS
, 2005
"... Using an algebraic formulation, we explore two well-known degeneracies involving the mass-squared differences for three-neutrino oscillations assuming CP symmetry is conserved. For vacuum oscillation, we derive the expression for the mixing angles that permit invariance under the interchange of two ..."
Abstract
- Add to MetaCart
Using an algebraic formulation, we explore two well-known degeneracies involving the mass-squared differences for three-neutrino oscillations assuming CP symmetry is conserved. For vacuum oscillation, we derive the expression for the mixing angles that permit invariance under the interchange of two
Testing for Common Trends
- Journal of the American Statistical Association
, 1988
"... Cointegrated multiple time series share at least one common trend. Two tests are developed for the number of common stochastic trends (i.e., for the order of cointegration) in a multiple time series with and without drift. Both tests involve the roots of the ordinary least squares coefficient matrix ..."
Abstract
-
Cited by 464 (7 self)
- Add to MetaCart
Cointegrated multiple time series share at least one common trend. Two tests are developed for the number of common stochastic trends (i.e., for the order of cointegration) in a multiple time series with and without drift. Both tests involve the roots of the ordinary least squares coefficient
Structural Equation Modeling And Regression: Guidelines For Research Practice
- COMMUNICATIONS OF THE ASSOCIATION FOR INFORMATION SYSTEMS
, 2000
"... The growing interest in Structured Equation Modeling (SEM) techniques and recognition of their importance in IS research suggests the need to compare and contrast different types of SEM techniques so that research designs can be appropriately selected. After assessing the extent to which these techn ..."
Abstract
-
Cited by 454 (9 self)
- Add to MetaCart
these techniques are currently being used in IS research, the article presents a running example which analyzes the same dataset via three very different statistical techniques. It then compares two classes of SEM: covariance-based SEM and partial-least-squares-based SEM. Finally, the article discusses linear
An Efficient k-Means Clustering Algorithm: Analysis and Implementation
, 2000
"... K-means clustering is a very popular clustering technique, which is used in numerous applications. Given a set of n data points in R d and an integer k, the problem is to determine a set of k points R d , called centers, so as to minimize the mean squared distance from each data point to its ..."
Abstract
-
Cited by 417 (4 self)
- Add to MetaCart
K-means clustering is a very popular clustering technique, which is used in numerous applications. Given a set of n data points in R d and an integer k, the problem is to determine a set of k points R d , called centers, so as to minimize the mean squared distance from each data point to its
The Determinants of Credit Spread Changes.
- Journal of Finance
, 2001
"... ABSTRACT Using dealer's quotes and transactions prices on straight industrial bonds, we investigate the determinants of credit spread changes. Variables that should in theory determine credit spread changes have rather limited explanatory power. Further, the residuals from this regression are ..."
Abstract
-
Cited by 422 (2 self)
- Add to MetaCart
rates, r 10 t . To capture potential non-linear effects due to convexity, we also include the squared level of the term structure, (r 10 t ) 2 . Slope of Yield Curve We define the slope of the yield curve as the difference between Datastream's 10-year and 2-year Benchmark Treasury yields, slope
Results 11 - 20
of
18,084