Results 1  10
of
8,145
Maximum likelihood from incomplete data via the EM algorithm
 JOURNAL OF THE ROYAL STATISTICAL SOCIETY, SERIES B
, 1977
"... A broadly applicable algorithm for computing maximum likelihood estimates from incomplete data is presented at various levels of generality. Theory showing the monotone behaviour of the likelihood and convergence of the algorithm is derived. Many examples are sketched, including missing value situat ..."
Abstract

Cited by 11972 (17 self)
 Add to MetaCart
situations, applications to grouped, censored or truncated data, finite mixture models, variance component estimation, hyperparameter estimation, iteratively reweighted least squares and factor analysis.
A subordinated stochastic process model with finite variance for speculative prices
 Econometrica
, 1973
"... Thanks are due to Hendrik Houthakker and Christopher Sims, for both encouragement and advice in developing this paper. As usual, all remaining errors are my own. This research was supported by a Harvard Dissertation Fellowship, NSF grant 33708, and the ..."
Abstract

Cited by 561 (1 self)
 Add to MetaCart
Thanks are due to Hendrik Houthakker and Christopher Sims, for both encouragement and advice in developing this paper. As usual, all remaining errors are my own. This research was supported by a Harvard Dissertation Fellowship, NSF grant 33708, and the
A model for technical inefficiency effects in a stochastic frontier production function for panel data
 Empirical Economics
, 1995
"... Abstract: A stochastic frontier production function is defined for panel data on firms, in which the nonnegative technical inetGciency effects are assumed to be a function of firmspecific variables and time. The inefficiency effects are assumed to be independently distributed as truncations of nor ..."
Abstract

Cited by 555 (4 self)
 Add to MetaCart
of normal distributions with constant variance, but with means which are a linear function of observable variables. This panel data model is an extension of recently proposed models for inefTiciency effects in stochastic frontiers for crosssectional data. An empirical application of the model is obtained
Fit indices in covariance structure modeling: Sensitivity to underparameterized model misspecification
 Psychological Methods
, 1998
"... This study evaluated the sensitivity of maximum likelihood (ML), generalized least squares (GLS), and asymptotic distributionfree (ADF)based fit indices to model misspecification, under conditions that varied sample size and distribution. The effect of violating assumptions of asymptotic robustn ..."
Abstract

Cited by 543 (0 self)
 Add to MetaCart
robustness theory also was examined. Standardized rootmeansquare residual (SRMR) was the most sensitive index to models with misspecified factor covariance(s), and TuckerLewis Index (1973; TLI), Bollen's fit index (1989; BL89), relative noncentrality index (RNI), comparative fit index (CFI
Answering the Skeptics: Yes, Standard Volatility Models Do Provide Accurate Forecasts
"... Volatility permeates modern financial theories and decision making processes. As such, accurate measures and good forecasts of future volatility are critical for the implementation and evaluation of asset and derivative pricing theories as well as trading and hedging strategies. In response to this, ..."
Abstract

Cited by 561 (45 self)
 Add to MetaCart
, a voluminous literature has emerged for modeling the temporal dependencies in financial market volatility at the daily and lower frequencies using ARCH and stochastic volatility type models. Most of these studies find highly significant insample parameter estimates and pronounced intertemporal
Image denoising using a scale mixture of Gaussians in the wavelet domain
 IEEE TRANS IMAGE PROCESSING
, 2003
"... We describe a method for removing noise from digital images, based on a statistical model of the coefficients of an overcomplete multiscale oriented basis. Neighborhoods of coefficients at adjacent positions and scales are modeled as the product of two independent random variables: a Gaussian vecto ..."
Abstract

Cited by 513 (17 self)
 Add to MetaCart
vector and a hidden positive scalar multiplier. The latter modulates the local variance of the coefficients in the neighborhood, and is thus able to account for the empirically observed correlation between the coefficient amplitudes. Under this model, the Bayesian least squares estimate of each
The Dynamics of Stochastic Volatility: Evidence from Underlying and Option Markets
, 2000
"... This paper proposes and estimates a more general parametric stochastic variance model of equity index returns than has been previously considered using data from both underlying and options markets. The parameters of the model under both the objective and riskneutral measures are estimated simultane ..."
Abstract

Cited by 159 (3 self)
 Add to MetaCart
simultaneously. I conclude that the square root stochastic variance model of Heston (1993) and others is incapable of generating realistic returns behavior and find that the data are more accurately represented by a stochastic variance model in the CEV class or a model that allows the price and variance
The Cyclical Behavior of Equilibrium Unemployment and Vacancies
 American Economic Review
, 2005
"... This paper argues that a broad class of search models cannot generate the observed businesscyclefrequency fluctuations in unemployment and job vacancies in response to shocks of a plausible magnitude. In the U.S., the vacancyunemployment ratio is 20 times as volatile as average labor productivity ..."
Abstract

Cited by 871 (23 self)
 Add to MetaCart
productivity, while under weak assumptions, search models predict that the vacancyunemployment ratio and labor productivity have nearly the same variance. I establish this claim both using analytical comparative statics in a very general deterministic search model and using simulations of a stochastic version
Loopy belief propagation for approximate inference: An empirical study. In:
 Proceedings of Uncertainty in AI,
, 1999
"... Abstract Recently, researchers have demonstrated that "loopy belief propagation" the use of Pearl's polytree algorithm in a Bayesian network with loops can perform well in the context of errorcorrecting codes. The most dramatic instance of this is the near Shannonlimit performanc ..."
Abstract

Cited by 676 (15 self)
 Add to MetaCart
; state of the root nodes to 0.9, and we utilized the noisyOR model for the other nodes with a small (0.1) inhibition probability (apart from the leak term, which we inhibited with probability 0.9). This param eterization has the effect of propagating 1 's from the top layer to the bottom. Thus
Testing for Common Trends
 Journal of the American Statistical Association
, 1988
"... Cointegrated multiple time series share at least one common trend. Two tests are developed for the number of common stochastic trends (i.e., for the order of cointegration) in a multiple time series with and without drift. Both tests involve the roots of the ordinary least squares coefficient matrix ..."
Abstract

Cited by 464 (7 self)
 Add to MetaCart
Cointegrated multiple time series share at least one common trend. Two tests are developed for the number of common stochastic trends (i.e., for the order of cointegration) in a multiple time series with and without drift. Both tests involve the roots of the ordinary least squares coefficient
Results 1  10
of
8,145