• Documents
  • Authors
  • Tables
  • Log in
  • Sign up
  • MetaCart
  • DMCA
  • Donate

CiteSeerX logo

Advanced Search Include Citations

Tools

Sorted by:
Try your query at:
Semantic Scholar Scholar Academic
Google Bing DBLP
Results 1 - 10 of 157,621
Next 10 →

In Silico Predictive Modeling of CRISPR/Cas9 guide efficiency

by Nicolo Fusi , Ian Smith , John Doench , Jennifer Listgarten
"... ABSTRACT The CRISPR/Cas9 system provides unprecedented genome editing capabilities; however, several facets of this system are under investigation for further characterization and optimization, including the choice of guide RNA that directs Cas9 to target DNA. In particular, given that one would li ..."
Abstract - Add to MetaCart
of guide knockout efficiency, we introduce a state-of-the art in silico modeling approach to identify guides that will lead to more effective gene knockout. We first investigated which guide and gene features are critical for prediction (e.g., single-and di-nucleotide identity of the gene target), which

Atmospheric Modeling, Data Assimilation and Predictability

by Eugenia Kalnay , 2003
"... Numerical weather prediction (NWP) now provides major guidance in our daily weather forecast. The accuracy of NWP models has improved steadily since the first successful experiment made by Charney, Fj!rtoft and von Neuman (1950). During the past 50 years, a large number of technical papers and repor ..."
Abstract - Cited by 626 (33 self) - Add to MetaCart
Numerical weather prediction (NWP) now provides major guidance in our daily weather forecast. The accuracy of NWP models has improved steadily since the first successful experiment made by Charney, Fj!rtoft and von Neuman (1950). During the past 50 years, a large number of technical papers

Constrained model predictive control: Stability and optimality

by D. Q. Mayne, J. B. Rawlings, C. V. Rao, P. O. M. Scokaert - AUTOMATICA , 2000
"... Model predictive control is a form of control in which the current control action is obtained by solving, at each sampling instant, a finite horizon open-loop optimal control problem, using the current state of the plant as the initial state; the optimization yields an optimal control sequence and t ..."
Abstract - Cited by 738 (16 self) - Add to MetaCart
Model predictive control is a form of control in which the current control action is obtained by solving, at each sampling instant, a finite horizon open-loop optimal control problem, using the current state of the plant as the initial state; the optimization yields an optimal control sequence

Predicting Internet Network Distance with Coordinates-Based Approaches

by T. S. Eugene Ng, Hui Zhang - In INFOCOM , 2001
"... In this paper, we propose to use coordinates-based mechanisms in a peer-to-peer architecture to predict Internet network distance (i.e. round-trip propagation and transmission delay) . We study two mechanisms. The first is a previously proposed scheme, called the triangulated heuristic, which is bas ..."
Abstract - Cited by 631 (6 self) - Add to MetaCart
In this paper, we propose to use coordinates-based mechanisms in a peer-to-peer architecture to predict Internet network distance (i.e. round-trip propagation and transmission delay) . We study two mechanisms. The first is a previously proposed scheme, called the triangulated heuristic, which

Predicting Transmembrane Protein Topology with a Hidden Markov Model: Application to Complete Genomes

by Anders Krogh, Björn Larsson, Gunnar von Heijne, Erik L. L. Sonnhammer - J. MOL. BIOL , 2001
"... ..."
Abstract - Cited by 899 (17 self) - Add to MetaCart
Abstract not found

Improved prediction of signal peptides -- SignalP 3.0

by Jannick Dyrløv Bendtsen, Henrik Nielsen, Gunnar von Heijne, Søren Brunak - J. MOL. BIOL. , 2004
"... We describe improvements of the currently most popular method for prediction of classically secreted proteins, SignalP. SignalP consists of two different predictors based on neural network and hidden Markov model algorithms, where both components have been updated. Motivated by the idea that the cle ..."
Abstract - Cited by 654 (7 self) - Add to MetaCart
We describe improvements of the currently most popular method for prediction of classically secreted proteins, SignalP. SignalP consists of two different predictors based on neural network and hidden Markov model algorithms, where both components have been updated. Motivated by the idea

Model checking and abstraction

by Peter J. Clarke, Djuradj Babich, Tariq M. King, B. M. Golam Kibria - ACM Transactions on Programming Languages and Systems , 1994
"... software developers are using the Java language as the language of choice on many applications. This is due to the effective use of the object-oriented (OO) paradigm to develop large software projects and the ability of the Java language to support the increasing use of web technologies in business ..."
Abstract - Cited by 742 (55 self) - Add to MetaCart
written in Java 1.4.x and Java 1.5.x to identify the distribution of groups used by developers. We use the data from the study to create prediction models that would allow developers to estimate the number of different groups of classes, fields and methods that are expected to be generated for large Java

Hierarchical Models of Object Recognition in Cortex

by Maximilian Riesenhuber, Tomaso Poggio , 1999
"... The classical model of visual processing in cortex is a hierarchy of increasingly sophisticated representations, extending in a natural way the model of simple to complex cells of Hubel and Wiesel. Somewhat surprisingly, little quantitative modeling has been done in the last 15 years to explore th ..."
Abstract - Cited by 836 (84 self) - Add to MetaCart
predictions. The model is based on a novel MAX-like operation on the inputs to certain cortical neurons which may have a general role in cortical function.

Bayesian Analysis of Stochastic Volatility Models

by Eric Jacquier, Nicholas G. Polson, Peter E. Rossi , 1994
"... this article is to develop new methods for inference and prediction in a simple class of stochastic volatility models in which logarithm of conditional volatility follows an autoregressive (AR) times series model. Unlike the autoregressive conditional heteroscedasticity (ARCH) and gener- alized ARCH ..."
Abstract - Cited by 601 (26 self) - Add to MetaCart
this article is to develop new methods for inference and prediction in a simple class of stochastic volatility models in which logarithm of conditional volatility follows an autoregressive (AR) times series model. Unlike the autoregressive conditional heteroscedasticity (ARCH) and gener- alized

Modeling TCP Throughput: A Simple Model and its Empirical Validation

by Jitendra Padhye, Victor Firoiu, Don Towsley, Jim Kurose , 1998
"... In this paper we develop a simple analytic characterization of the steady state throughput, as a function of loss rate and round trip time for a bulk transfer TCP flow, i.e., a flow with an unlimited amount of data to send. Unlike the models in [6, 7, 10], our model captures not only the behavior of ..."
Abstract - Cited by 1337 (36 self) - Add to MetaCart
retransmit events. Our measurements demonstrate that our model is able to more accurately predict TCP throughput and is accurate over a wider range of loss rates. This material is based upon work supported by the National Science Foundation under grants NCR-95-08274, NCR-95-23807 and CDA-95-02639. Any
Next 10 →
Results 1 - 10 of 157,621
Powered by: Apache Solr
  • About CiteSeerX
  • Submit and Index Documents
  • Privacy Policy
  • Help
  • Data
  • Source
  • Contact Us

Developed at and hosted by The College of Information Sciences and Technology

© 2007-2019 The Pennsylvania State University