Results 1  10
of
2,048,687
Compressive sampling
, 2006
"... Conventional wisdom and common practice in acquisition and reconstruction of images from frequency data follow the basic principle of the Nyquist density sampling theory. This principle states that to reconstruct an image, the number of Fourier samples we need to acquire must match the desired res ..."
Abstract

Cited by 1414 (15 self)
 Add to MetaCart
resolution of the image, i.e. the number of pixels in the image. This paper surveys an emerging theory which goes by the name of “compressive sampling” or “compressed sensing,” and which says that this conventional wisdom is inaccurate. Perhaps surprisingly, it is possible to reconstruct images or signals
CoSaMP: Iterative signal recovery from incomplete and inaccurate samples
 California Institute of Technology, Pasadena
, 2008
"... Abstract. Compressive sampling offers a new paradigm for acquiring signals that are compressible with respect to an orthonormal basis. The major algorithmic challenge in compressive sampling is to approximate a compressible signal from noisy samples. This paper describes a new iterative recovery alg ..."
Abstract

Cited by 749 (13 self)
 Add to MetaCart
Abstract. Compressive sampling offers a new paradigm for acquiring signals that are compressible with respect to an orthonormal basis. The major algorithmic challenge in compressive sampling is to approximate a compressible signal from noisy samples. This paper describes a new iterative recovery
Multiobjective evolutionary algorithms: a comparative case study and the strength pareto approach
 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION
, 1999
"... Evolutionary algorithms (EA’s) are often wellsuited for optimization problems involving several, often conflicting objectives. Since 1985, various evolutionary approaches to multiobjective optimization have been developed that are capable of searching for multiple solutions concurrently in a singl ..."
Abstract

Cited by 789 (22 self)
 Add to MetaCart
introduce a new evolutionary approach to multicriteria optimization, the Strength Pareto EA (SPEA), that combines several features of previous multiobjective EA’s in a unique manner. It is characterized by a) storing nondominated solutions externally in a second, continuously updated population, b
Automatic Musical Genre Classification Of Audio Signals
 IEEE TRANSACTIONS ON SPEECH AND AUDIO PROCESSING
, 2002
"... ... describe music. They are commonly used to structure the increasing amounts of music available in digital form on the Web and are important for music information retrieval. Genre categorization for audio has traditionally been performed manually. A particular musical genre is characterized by sta ..."
Abstract

Cited by 815 (33 self)
 Add to MetaCart
by statistical properties related to the instrumentation, rhythmic structure and form of its members. In this work, algorithms for the automatic genre categorization of audio signals are described. More specifically, we propose a set of features for representing texture and instrumentation. In addition a novel
Stable signal recovery from incomplete and inaccurate measurements,”
 Comm. Pure Appl. Math.,
, 2006
"... Abstract Suppose we wish to recover a vector x 0 ∈ R m (e.g., a digital signal or image) from incomplete and contaminated observations y = Ax 0 + e; A is an n × m matrix with far fewer rows than columns (n m) and e is an error term. Is it possible to recover x 0 accurately based on the data y? To r ..."
Abstract

Cited by 1368 (38 self)
 Add to MetaCart
Abstract Suppose we wish to recover a vector x 0 ∈ R m (e.g., a digital signal or image) from incomplete and contaminated observations y = Ax 0 + e; A is an n × m matrix with far fewer rows than columns (n m) and e is an error term. Is it possible to recover x 0 accurately based on the data y
Static Scheduling of Synchronous Data Flow Programs for Digital Signal Processing
 IEEE TRANSACTIONS ON COMPUTERS
, 1987
"... Large grain data flow (LGDF) programming is natural and convenient for describing digital signal processing (DSP) systems, but its runtime overhead is costly in real time or costsensitive applications. In some situations, designers are not willing to squander computing resources for the sake of pro ..."
Abstract

Cited by 588 (37 self)
 Add to MetaCart
flow (SDF) differs from traditional data flow in that the amount of data produced and consumed by a data flow node is specified a priori for each input and output. This is equivalent to specifying the relative sample rates in signal processing system. This means that the scheduling of SDF nodes need
Robust Uncertainty Principles: Exact Signal Reconstruction From Highly Incomplete Frequency Information
, 2006
"... This paper considers the model problem of reconstructing an object from incomplete frequency samples. Consider a discretetime signal and a randomly chosen set of frequencies. Is it possible to reconstruct from the partial knowledge of its Fourier coefficients on the set? A typical result of this pa ..."
Abstract

Cited by 2585 (50 self)
 Add to MetaCart
This paper considers the model problem of reconstructing an object from incomplete frequency samples. Consider a discretetime signal and a randomly chosen set of frequencies. Is it possible to reconstruct from the partial knowledge of its Fourier coefficients on the set? A typical result
Compressive sensing
 IEEE Signal Processing Mag
, 2007
"... The Shannon/Nyquist sampling theorem tells us that in order to not lose information when uniformly sampling a signal we must sample at least two times faster than its bandwidth. In many applications, including digital image and video cameras, the Nyquist rate can be so high that we end up with too m ..."
Abstract

Cited by 677 (61 self)
 Add to MetaCart
The Shannon/Nyquist sampling theorem tells us that in order to not lose information when uniformly sampling a signal we must sample at least two times faster than its bandwidth. In many applications, including digital image and video cameras, the Nyquist rate can be so high that we end up with too
On the Use of Windows for Harmonic Analysis With the Discrete Fourier Transform
 Proc. IEEE
, 1978
"... AhmwThis Pw!r mak = available a concise review of data win compromise consists of applying windows to the sampled daws pad the ^ affect On the Of in the data set, or equivalently, smoothing the spectral samples. '7 of aoise9 m the ptesence of sdroag bar The two operations to which we subject ..."
Abstract

Cited by 652 (0 self)
 Add to MetaCart
, windowing is less related to sampled windows for DFT's. HERE IS MUCH signal processing devoted to detection and estimation. Detection is the task of determiningif a specific signal set is present in an observation, while estimation is the task of obtaining the values of the parameters
RADAR: an inbuilding RFbased user location and tracking system
, 2000
"... The proliferation of mobile computing devices and localarea wireless networks has fostered a growing interest in locationaware systems and services. In this paper we present RADAR, a radiofrequency (RF) based system for locating and tracking users inside buildings. RADAR operates by recording and ..."
Abstract

Cited by 2003 (14 self)
 Add to MetaCart
and processing signal strength information at multiple base stations positioned to provide overlapping coverage in the area of interest. It employs techniques that combine empirical measurements with signal propagation modeling to enable locationaware services and applications. We present concrete experimental
Results 1  10
of
2,048,687