Results 1  10
of
8,915
Exact Matrix Completion via Convex Optimization
, 2008
"... We consider a problem of considerable practical interest: the recovery of a data matrix from a sampling of its entries. Suppose that we observe m entries selected uniformly at random from a matrix M. Can we complete the matrix and recover the entries that we have not seen? We show that one can perfe ..."
Abstract

Cited by 873 (26 self)
 Add to MetaCart
We consider a problem of considerable practical interest: the recovery of a data matrix from a sampling of its entries. Suppose that we observe m entries selected uniformly at random from a matrix M. Can we complete the matrix and recover the entries that we have not seen? We show that one can
A new learning algorithm for blind signal separation

, 1996
"... A new online learning algorithm which minimizes a statistical dependency among outputs is derived for blind separation of mixed signals. The dependency is measured by the average mutual information (MI) of the outputs. The source signals and the mixing matrix are unknown except for the number of ..."
Abstract

Cited by 622 (80 self)
 Add to MetaCart
A new online learning algorithm which minimizes a statistical dependency among outputs is derived for blind separation of mixed signals. The dependency is measured by the average mutual information (MI) of the outputs. The source signals and the mixing matrix are unknown except for the number
Stable signal recovery from incomplete and inaccurate measurements,”
 Comm. Pure Appl. Math.,
, 2006
"... Abstract Suppose we wish to recover a vector x 0 ∈ R m (e.g., a digital signal or image) from incomplete and contaminated observations y = Ax 0 + e; A is an n × m matrix with far fewer rows than columns (n m) and e is an error term. Is it possible to recover x 0 accurately based on the data y? To r ..."
Abstract

Cited by 1397 (38 self)
 Add to MetaCart
Abstract Suppose we wish to recover a vector x 0 ∈ R m (e.g., a digital signal or image) from incomplete and contaminated observations y = Ax 0 + e; A is an n × m matrix with far fewer rows than columns (n m) and e is an error term. Is it possible to recover x 0 accurately based on the data y
CoSaMP: Iterative signal recovery from incomplete and inaccurate samples
 California Institute of Technology, Pasadena
, 2008
"... Abstract. Compressive sampling offers a new paradigm for acquiring signals that are compressible with respect to an orthonormal basis. The major algorithmic challenge in compressive sampling is to approximate a compressible signal from noisy samples. This paper describes a new iterative recovery alg ..."
Abstract

Cited by 770 (13 self)
 Add to MetaCart
with the sampling matrix. For compressible signals, the running time is just O(N log 2 N), where N is the length of the signal. 1.
Capacity of a Mobile MultipleAntenna Communication Link in Rayleigh Flat Fading
"... We analyze a mobile wireless link comprising M transmitter and N receiver antennas operating in a Rayleigh flatfading environment. The propagation coefficients between every pair of transmitter and receiver antennas are statistically independent and unknown; they remain constant for a coherence int ..."
Abstract

Cited by 495 (22 self)
 Add to MetaCart
signals. We prove that there is no point in making the number of transmitter antennas greater than the length of the coherence interval: the capacity for M> Tis equal to the capacity for M = T. Capacity is achieved when the T M transmitted signal matrix is equal to the product of two statistically
Tensor Decompositions and Applications
 SIAM REVIEW
, 2009
"... This survey provides an overview of higherorder tensor decompositions, their applications, and available software. A tensor is a multidimensional or N way array. Decompositions of higherorder tensors (i.e., N way arrays with N â¥ 3) have applications in psychometrics, chemometrics, signal proce ..."
Abstract

Cited by 723 (18 self)
 Add to MetaCart
This survey provides an overview of higherorder tensor decompositions, their applications, and available software. A tensor is a multidimensional or N way array. Decompositions of higherorder tensors (i.e., N way arrays with N â¥ 3) have applications in psychometrics, chemometrics, signal
Decoding by Linear Programming
, 2004
"... This paper considers the classical error correcting problem which is frequently discussed in coding theory. We wish to recover an input vector f ∈ Rn from corrupted measurements y = Af + e. Here, A is an m by n (coding) matrix and e is an arbitrary and unknown vector of errors. Is it possible to rec ..."
Abstract

Cited by 1399 (16 self)
 Add to MetaCart
This paper considers the classical error correcting problem which is frequently discussed in coding theory. We wish to recover an input vector f ∈ Rn from corrupted measurements y = Af + e. Here, A is an m by n (coding) matrix and e is an arbitrary and unknown vector of errors. Is it possible
From Sparse Solutions of Systems of Equations to Sparse Modeling of Signals and Images
, 2007
"... A fullrank matrix A ∈ IR n×m with n < m generates an underdetermined system of linear equations Ax = b having infinitely many solutions. Suppose we seek the sparsest solution, i.e., the one with the fewest nonzero entries: can it ever be unique? If so, when? As optimization of sparsity is combin ..."
Abstract

Cited by 427 (36 self)
 Add to MetaCart
A fullrank matrix A ∈ IR n×m with n < m generates an underdetermined system of linear equations Ax = b having infinitely many solutions. Suppose we seek the sparsest solution, i.e., the one with the fewest nonzero entries: can it ever be unique? If so, when? As optimization of sparsity
Equivariant Adaptive Source Separation
 IEEE Trans. on Signal Processing
, 1996
"... Source separation consists in recovering a set of independent signals when only mixtures with unknown coefficients are observed. This paper introduces a class of adaptive algorithms for source separation which implements an adaptive version of equivariant estimation and is henceforth called EASI (Eq ..."
Abstract

Cited by 449 (9 self)
 Add to MetaCart
algorithm does not depend on the mixing matrix. In particular, convergence rates, stability conditions and interference rejection levels depend only on the (normalized) distributions of the source signals. Close form expressions of these quantities are given via an asymptotic performance analysis
Online learning for matrix factorization and sparse coding
, 2010
"... Sparse coding—that is, modelling data vectors as sparse linear combinations of basis elements—is widely used in machine learning, neuroscience, signal processing, and statistics. This paper focuses on the largescale matrix factorization problem that consists of learning the basis set in order to ad ..."
Abstract

Cited by 330 (31 self)
 Add to MetaCart
Sparse coding—that is, modelling data vectors as sparse linear combinations of basis elements—is widely used in machine learning, neuroscience, signal processing, and statistics. This paper focuses on the largescale matrix factorization problem that consists of learning the basis set in order
Results 1  10
of
8,915