Results 1  10
of
5,119,262
Approximate Riemann Solvers, Parameter Vectors, and Difference Schemes
 J. COMP. PHYS
, 1981
"... Several numerical schemes for the solution of hyperbolic conservation laws are based on exploiting the information obtained by considering a sequence of Riemann problems. It is argued that in existing schemes much of this information is degraded, and that only certain features of the exact solution ..."
Abstract

Cited by 950 (2 self)
 Add to MetaCart
Several numerical schemes for the solution of hyperbolic conservation laws are based on exploiting the information obtained by considering a sequence of Riemann problems. It is argued that in existing schemes much of this information is degraded, and that only certain features of the exact solution
Statistical Comparisons of Classifiers over Multiple Data Sets
, 2006
"... While methods for comparing two learning algorithms on a single data set have been scrutinized for quite some time already, the issue of statistical tests for comparisons of more algorithms on multiple data sets, which is even more essential to typical machine learning studies, has been all but igno ..."
Abstract

Cited by 710 (0 self)
 Add to MetaCart
but ignored. This article reviews the current practice and then theoretically and empirically examines several suitable tests. Based on that, we recommend a set of simple, yet safe and robust nonparametric tests for statistical comparisons of classifiers: the Wilcoxon signed ranks test for comparison of two
A gentle tutorial on the EM algorithm and its application to parameter estimation for gaussian mixture and hidden markov models
, 1997
"... We describe the maximumlikelihood parameter estimation problem and how the Expectationform of the EM algorithm as it is often given in the literature. We then develop the EM parameter estimation procedure for two applications: 1) finding the parameters of a mixture of Gaussian densities, and 2) fi ..."
Abstract

Cited by 679 (4 self)
 Add to MetaCart
rigor. ii 1 Maximumlikelihood Recall the definition of the maximumlikelihood estimation problem. We have a density function ¢¡¤£¦ ¥ §© ¨ that is governed by the set of parameters § (e.g., might be a set of Gaussians and § could be the means and covariances). We also have a data set of size
A standardized set of 260 pictures: Norms for name agreement, image agreement, familiarity, and visual complexity
 JOURNAL OF EXPERIMENTAL PSYCHOLOGY: HUMAN LEARNING AND MEMORY
, 1980
"... In this article we present a standardized set of 260 pictures for use in experiments investigating differences and similarities in the processing of pictures and words. The pictures are blackandwhite line drawings executed according to a set of rules that provide consistency of pictorial represent ..."
Abstract

Cited by 619 (1 self)
 Add to MetaCart
attributes of the pictures. The concepts were selected to provide exemplars from several widely studied semantic categories. Sources of naming variance, and mean familiarity and complexity of the exemplars, differed significantly across the set of categories investigated. The potential significance of each
Fitting a mixture model by expectation maximization to discover motifs in biopolymers
 Proceedings of the Second International Conference on Intelligent Systems for Molecular Biology
, 1994
"... ABSTRACT: The algorithm described in this paper discovers one or more motifs in a collection of DNA or protein sequences by using the technique of expectation maximization to fit a twocomponent finite mixture model to the set of sequences. Multiple motifs are found by fitting a twocomponent finite ..."
Abstract

Cited by 940 (5 self)
 Add to MetaCart
several different motifs with differing numbers of occurrences in a single dataset. Motifs are discovered by treating the set of sequences as though they were created by a stochastic process which can be modelled as a mixture of two densities, one of which generated the occurrences of the motif
Improved Boosting Algorithms Using Confidencerated Predictions
 MACHINE LEARNING
, 1999
"... We describe several improvements to Freund and Schapire’s AdaBoost boosting algorithm, particularly in a setting in which hypotheses may assign confidences to each of their predictions. We give a simplified analysis of AdaBoost in this setting, and we show how this analysis can be used to find impr ..."
Abstract

Cited by 929 (26 self)
 Add to MetaCart
We describe several improvements to Freund and Schapire’s AdaBoost boosting algorithm, particularly in a setting in which hypotheses may assign confidences to each of their predictions. We give a simplified analysis of AdaBoost in this setting, and we show how this analysis can be used to find
Realtime human pose recognition in parts from single depth images
 IN CVPR
, 2011
"... We propose a new method to quickly and accurately predict 3D positions of body joints from a single depth image, using no temporal information. We take an object recognition approach, designing an intermediate body parts representation that maps the difficult pose estimation problem into a simpler p ..."
Abstract

Cited by 549 (17 self)
 Add to MetaCart
local modes. The system runs at 200 frames per second on consumer hardware. Our evaluation shows high accuracy on both synthetic and real test sets, and investigates the effect of several training parameters. We achieve state of the art accuracy in our comparison with related work and demonstrate
Active Appearance Models
 IEEE Transactions on Pattern Analysis and Machine Intelligence
, 1998
"... AbstractÐWe describe a new method of matching statistical models of appearance to images. A set of model parameters control modes of shape and graylevel variation learned from a training set. We construct an efficient iterative matching algorithm by learning the relationship between perturbations i ..."
Abstract

Cited by 2121 (59 self)
 Add to MetaCart
AbstractÐWe describe a new method of matching statistical models of appearance to images. A set of model parameters control modes of shape and graylevel variation learned from a training set. We construct an efficient iterative matching algorithm by learning the relationship between perturbations
An analysis of transformations
 Journal of the Royal Statistical Society. Series B (Methodological
, 1964
"... In the analysis of data it is often assumed that observations y,, y,,...,y, are independently normally distributed with constant variance and with expectations specified by a model linear in a set of parameters 0. In this paper we make the less restrictive assumption that such a normal, homoscedasti ..."
Abstract

Cited by 1026 (3 self)
 Add to MetaCart
In the analysis of data it is often assumed that observations y,, y,,...,y, are independently normally distributed with constant variance and with expectations specified by a model linear in a set of parameters 0. In this paper we make the less restrictive assumption that such a normal
OPTICS: Ordering Points To Identify the Clustering Structure
, 1999
"... Cluster analysis is a primary method for database mining. It is either used as a standalone tool to get insight into the distribution of a data set, e.g. to focus further analysis and data processing, or as a preprocessing step for other algorithms operating on the detected clusters. Almost all of ..."
Abstract

Cited by 508 (50 self)
 Add to MetaCart
of the wellknown clustering algorithms require input parameters which are hard to determine but have a significant influence on the clustering result. Furthermore, for many realdata sets there does not even exist a global parameter setting for which the result of the clustering algorithm describes
Results 1  10
of
5,119,262