Results 1  10
of
5,692
Separation dimension of bounded degree graphs
"... The separation dimension of a graph G is the smallest natural number k for which the vertices of G can be embedded in Rk such that any pair of disjoint edges in G can be separated by a hyperplane normal to one of the axes. Equivalently, it is the smallest possible cardinality of a family F of total ..."
Abstract
 Add to MetaCart
The separation dimension of a graph G is the smallest natural number k for which the vertices of G can be embedded in Rk such that any pair of disjoint edges in G can be separated by a hyperplane normal to one of the axes. Equivalently, it is the smallest possible cardinality of a family F of total
N Degrees of Separation: MultiDimensional Separation of Concerns
 IN PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING
, 1999
"... Done well, separation of concerns can provide many software engineering benefits, including reduced complexity, improved reusability, and simpler evolution. The choice of boundaries for separate concerns depends on both requirements on the system and on the kind(s) of decompositionand composition a ..."
Abstract

Cited by 522 (8 self)
 Add to MetaCart
given formalism supports. The predominant methodologies and formalisms available, however, support only orthogonal separations of concerns, along single dimensions of composition and decomposition. These characteristics lead to a number of wellknown and difficult problems. This paper describes a new
The Problem of Combining Integral and Separable Dimensions
"... Abstract: For geometrical models of cognition, the notion of distance rules or metrics is fundamental. Within psychology, it is well established that pairs of dimensions that are processed holistically integral dimensions normally combine so as they are best described with a Euclidean metric, wh ..."
Abstract

Cited by 4 (1 self)
 Add to MetaCart
, whereas pairs of dimensions that are processed analytically separable dimensions most often combine with a cityblock metric. The experimental tradition studying information integration has typically been limited to twodimensional stimuli. A next step is to study information integration when dealing
Attention, similarity, and the identificationCategorization Relationship
, 1986
"... A unified quantitative approach to modeling subjects ' identification and categorization of multidimensional perceptual stimuli is proposed and tested. Two subjects identified and categorized the same set of perceptually confusable stimuli varying on separable dimensions. The identification dat ..."
Abstract

Cited by 690 (28 self)
 Add to MetaCart
A unified quantitative approach to modeling subjects ' identification and categorization of multidimensional perceptual stimuli is proposed and tested. Two subjects identified and categorized the same set of perceptually confusable stimuli varying on separable dimensions. The identification
A tutorial on support vector machines for pattern recognition
 Data Mining and Knowledge Discovery
, 1998
"... The tutorial starts with an overview of the concepts of VC dimension and structural risk minimization. We then describe linear Support Vector Machines (SVMs) for separable and nonseparable data, working through a nontrivial example in detail. We describe a mechanical analogy, and discuss when SV ..."
Abstract

Cited by 3393 (12 self)
 Add to MetaCart
The tutorial starts with an overview of the concepts of VC dimension and structural risk minimization. We then describe linear Support Vector Machines (SVMs) for separable and nonseparable data, working through a nontrivial example in detail. We describe a mechanical analogy, and discuss when
SupportVector Networks
 Machine Learning
, 1995
"... The supportvector network is a new learning machine for twogroup classification problems. The machine conceptually implements the following idea: input vectors are nonlinearly mapped to a very highdimension feature space. In this feature space a linear decision surface is constructed. Special pr ..."
Abstract

Cited by 3703 (35 self)
 Add to MetaCart
The supportvector network is a new learning machine for twogroup classification problems. The machine conceptually implements the following idea: input vectors are nonlinearly mapped to a very highdimension feature space. In this feature space a linear decision surface is constructed. Special
A New Kind of Science
, 2002
"... “Somebody says, ‘You know, you people always say that space is continuous. How do you know when you get to a small enough dimension that there really are enough points in between, that it isn’t just a lot of dots separated by little distances? ’ Or they say, ‘You know those quantum mechanical amplit ..."
Abstract

Cited by 893 (0 self)
 Add to MetaCart
“Somebody says, ‘You know, you people always say that space is continuous. How do you know when you get to a small enough dimension that there really are enough points in between, that it isn’t just a lot of dots separated by little distances? ’ Or they say, ‘You know those quantum mechanical
Rendering of Surfaces from Volume Data
 IEEE COMPUTER GRAPHICS AND APPLICATIONS
, 1988
"... The application of volume rendering techniques to the display of surfaces from sampled scalar functions of three spatial dimensions is explored. Fitting of geometric primitives to the sampled data is not required. Images are formed by directly shading each sample and projecting it onto the picture ..."
Abstract

Cited by 875 (12 self)
 Add to MetaCart
The application of volume rendering techniques to the display of surfaces from sampled scalar functions of three spatial dimensions is explored. Fitting of geometric primitives to the sampled data is not required. Images are formed by directly shading each sample and projecting it onto
The geometry of graphs and some of its algorithmic applications
 COMBINATORICA
, 1995
"... In this paper we explore some implications of viewing graphs as geometric objects. This approach offers a new perspective on a number of graphtheoretic and algorithmic problems. There are several ways to model graphs geometrically and our main concern here is with geometric representations that res ..."
Abstract

Cited by 524 (19 self)
 Add to MetaCart
that respect the metric of the (possibly weighted) graph. Given a graph G we map its vertices to a normed space in an attempt to (i) Keep down the dimension of the host space and (ii) Guarantee a small distortion, i.e., make sure that distances between vertices in G closely match the distances between
Results 1  10
of
5,692