• Documents
  • Authors
  • Tables
  • Log in
  • Sign up
  • MetaCart
  • DMCA
  • Donate

CiteSeerX logo

Advanced Search Include Citations

Tools

Sorted by:
Try your query at:
Semantic Scholar Scholar Academic
Google Bing DBLP
Results 1 - 10 of 4,624
Next 10 →

LabelMe: A Database and Web-Based Tool for Image Annotation

by B. C. Russell, A. Torralba, K. P. Murphy, W. T. Freeman , 2008
"... We seek to build a large collection of images with ground truth labels to be used for object detection and recognition research. Such data is useful for supervised learning and quantitative evaluation. To achieve this, we developed a web-based tool that allows easy image annotation and instant sha ..."
Abstract - Cited by 679 (46 self) - Add to MetaCart
We seek to build a large collection of images with ground truth labels to be used for object detection and recognition research. Such data is useful for supervised learning and quantitative evaluation. To achieve this, we developed a web-based tool that allows easy image annotation and instant

Modeling annotated data

by David M. Blei, Michael I. Jordan - IN PROC. OF THE 26TH INTL. ACM SIGIR CONFERENCE , 2003
"... We consider the problem of modeling annotated data—data with multiple types where the instance of one type (such as a caption) serves as a description of the other type (such as an image). We describe three hierarchical probabilistic mixture models that are aimed at such data, culminating in the Cor ..."
Abstract - Cited by 443 (12 self) - Add to MetaCart
, automatic annotation, and text-based image retrieval using the Corel database of images and captions.

Photobook: Content-Based Manipulation of Image Databases

by A. Pentland, R. W. Picard, S. Sclaroff , 1995
"... We describe the Photobook system, which is a set of interactive tools for browsing and searching images and image sequences. These query tools differ from those used in standard image databases in that they make direct use of the image content rather than relying on text annotations. Direct search o ..."
Abstract - Cited by 542 (0 self) - Add to MetaCart
We describe the Photobook system, which is a set of interactive tools for browsing and searching images and image sequences. These query tools differ from those used in standard image databases in that they make direct use of the image content rather than relying on text annotations. Direct search

Imagenet: A large-scale hierarchical image database

by Jia Deng, Wei Dong, Richard Socher, Li-jia Li, Kai Li, Li Fei-fei - In CVPR , 2009
"... The explosion of image data on the Internet has the potential to foster more sophisticated and robust models and algorithms to index, retrieve, organize and interact with images and multimedia data. But exactly how such data can be harnessed and organized remains a critical problem. We introduce her ..."
Abstract - Cited by 840 (28 self) - Add to MetaCart
of annotated images organized by the semantic hierarchy of WordNet. This paper offers a detailed analysis of ImageNet in its current state: 12 subtrees with 5247 synsets and 3.2 million images in total. We show that ImageNet is much larger in scale and diversity and much more accurate than the current image

Image retrieval: ideas, influences, and trends of the new age

by Ritendra Datta, Dhiraj Joshi, Jia Li, James Z. Wang - ACM COMPUTING SURVEYS , 2008
"... We have witnessed great interest and a wealth of promise in content-based image retrieval as an emerging technology. While the last decade laid foundation to such promise, it also paved the way for a large number of new techniques and systems, got many new people involved, and triggered stronger ass ..."
Abstract - Cited by 485 (13 self) - Add to MetaCart
We have witnessed great interest and a wealth of promise in content-based image retrieval as an emerging technology. While the last decade laid foundation to such promise, it also paved the way for a large number of new techniques and systems, got many new people involved, and triggered stronger

Matching words and pictures

by Kobus Barnard, Pinar Duygulu, David Forsyth, Nando De Freitas, David M. Blei, Michael I. Jordan - JOURNAL OF MACHINE LEARNING RESEARCH , 2003
"... We present a new approach for modeling multi-modal data sets, focusing on the specific case of segmented images with associated text. Learning the joint distribution of image regions and words has many applications. We consider in detail predicting words associated with whole images (auto-annotation ..."
Abstract - Cited by 665 (40 self) - Add to MetaCart
We present a new approach for modeling multi-modal data sets, focusing on the specific case of segmented images with associated text. Learning the joint distribution of image regions and words has many applications. We consider in detail predicting words associated with whole images (auto-annotation

Photo tourism: Exploring photo collections in 3D

by Noah Snavely, Steven M. Seitz, Richard Szeliski - IN PROC. ACM SIGGRAPH , 2006
"... We present a system for interactively browsing and exploring large unstructured collections of photographs of a scene using a novel 3D interface. Our system consists of an image-based modeling front end that automatically computes the viewpoint of each photograph as well as a sparse 3D model of th ..."
Abstract - Cited by 677 (37 self) - Add to MetaCart
We present a system for interactively browsing and exploring large unstructured collections of photographs of a scene using a novel 3D interface. Our system consists of an image-based modeling front end that automatically computes the viewpoint of each photograph as well as a sparse 3D model

A bayesian hierarchical model for learning natural scene categories

by Li Fei-fei - In CVPR , 2005
"... We propose a novel approach to learn and recognize natural scene categories. Unlike previous work [9, 17], it does not require experts to annotate the training set. We represent the image of a scene by a collection of local regions, denoted as codewords obtained by unsupervised learning. Each region ..."
Abstract - Cited by 948 (15 self) - Add to MetaCart
We propose a novel approach to learn and recognize natural scene categories. Unlike previous work [9, 17], it does not require experts to annotate the training set. We represent the image of a scene by a collection of local regions, denoted as codewords obtained by unsupervised learning. Each

Automatic Image Annotation and Retrieval using Cross-Media Relevance Models

by J. Jeon, V. Lavrenko, R. Manmatha , 2003
"... Libraries have traditionally used manual image annotation for indexing and then later retrieving their image collections. However, manual image annotation is an expensive and labor intensive procedure and hence there has been great interest in coming up with automatic ways to retrieve images based o ..."
Abstract - Cited by 431 (14 self) - Add to MetaCart
Libraries have traditionally used manual image annotation for indexing and then later retrieving their image collections. However, manual image annotation is an expensive and labor intensive procedure and hence there has been great interest in coming up with automatic ways to retrieve images based

The PASCAL Visual Object Classes (VOC) Challenge

by M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, A. Zisserman - INTERNATIONAL JOURNAL OF COMPUTER VISION
"... ... and detection, providing the vision and machine learning communities with a standard dataset of images and annotation, and standard evaluation procedures. Organised annually from 2005 to present, the challenge and its associated dataset has become accepted as the benchmark for object detection. ..."
Abstract - Cited by 629 (20 self) - Add to MetaCart
... and detection, providing the vision and machine learning communities with a standard dataset of images and annotation, and standard evaluation procedures. Organised annually from 2005 to present, the challenge and its associated dataset has become accepted as the benchmark for object detection
Next 10 →
Results 1 - 10 of 4,624
Powered by: Apache Solr
  • About CiteSeerX
  • Submit and Index Documents
  • Privacy Policy
  • Help
  • Data
  • Source
  • Contact Us

Developed at and hosted by The College of Information Sciences and Technology

© 2007-2019 The Pennsylvania State University