• Documents
  • Authors
  • Tables
  • Log in
  • Sign up
  • MetaCart
  • DMCA
  • Donate

CiteSeerX logo

Advanced Search Include Citations

Tools

Sorted by:
Try your query at:
Semantic Scholar Scholar Academic
Google Bing DBLP
Results 1 - 10 of 64,978
Next 10 →

SIMPLIcity: Semantics-Sensitive Integrated Matching for Picture LIbraries

by James Z. Wang, Jia Li, Gio Wiederhold - IEEE Transactions on Pattern Analysis and Machine Intelligence , 2001
"... The need for efficient content-based image retrieval has increased tremendously in many application areas such as biomedicine, military, commerce, education, and Web image classification and searching. We present here SIMPLIcity (Semanticssensitive Integrated Matching for Picture LIbraries), an imag ..."
Abstract - Cited by 551 (35 self) - Add to MetaCart
), an image retrieval system, which uses semantics classification methods, a wavelet-based approach for feature extraction, and integrated region matching based upon image segmentation. As in other regionbased retrieval systems, an image is represented by a set of regions, roughly corresponding to objects

Mining the Peanut Gallery: Opinion Extraction and Semantic Classification of Product Reviews

by Kushal Dave, Steve Lawrence, David M. Pennock , 2003
"... The web contains a wealth of product reviews, but sifting through them is a daunting task. Ideally, an opinion mining tool would process a set of search results for a given item, generating a list of product attributes (quality, features, etc.) and aggregating opinions about each of them (poor, mixe ..."
Abstract - Cited by 453 (0 self) - Add to MetaCart
, mixed, good). We begin by identifying the unique properties of this problem and develop a method for automatically distinguishing between positive and negative reviews. Our classifier draws on information retrieval techniques for feature extraction and scoring, and the results for various metrics

Thumbs Up or Thumbs Down? Semantic Orientation Applied to Unsupervised Classification of Reviews

by Peter Turney , 2002
"... This paper presents a simple unsupervised learning algorithm for classifying reviews as recommended (thumbs up) or not recommended (thumbs down). The classification of a review is predicted by the average semantic orientation of the phrases in the review that contain adjectives or adverbs. A ..."
Abstract - Cited by 784 (5 self) - Add to MetaCart
This paper presents a simple unsupervised learning algorithm for classifying reviews as recommended (thumbs up) or not recommended (thumbs down). The classification of a review is predicted by the average semantic orientation of the phrases in the review that contain adjectives or adverbs

Efficient semantic matching

by Fausto Giunchiglia, Mikalai Yatskevich, Enrico Giunchiglia , 2004
"... We think of Match as an operator which takes two graph-like structures and produces a mapping between semantically related nodes. We concentrate on classifications with tree structures. In semantic matching, correspondences are discovered by translating the natural language labels of nodes into prop ..."
Abstract - Cited by 855 (68 self) - Add to MetaCart
We think of Match as an operator which takes two graph-like structures and produces a mapping between semantically related nodes. We concentrate on classifications with tree structures. In semantic matching, correspondences are discovered by translating the natural language labels of nodes

Indexing by latent semantic analysis

by Scott Deerwester, Susan T. Dumais, George W. Furnas, Thomas K. Landauer, Richard Harshman - JOURNAL OF THE AMERICAN SOCIETY FOR INFORMATION SCIENCE , 1990
"... A new method for automatic indexing and retrieval is described. The approach is to take advantage of implicit higher-order structure in the association of terms with documents (“semantic structure”) in order to improve the detection of relevant documents on the basis of terms found in queries. The p ..."
Abstract - Cited by 3779 (35 self) - Add to MetaCart
A new method for automatic indexing and retrieval is described. The approach is to take advantage of implicit higher-order structure in the association of terms with documents (“semantic structure”) in order to improve the detection of relevant documents on the basis of terms found in queries

Verb Semantics And Lexical Selection

by Zhibiao Wu , 1994
"... ... structure. As Levin has addressed (Levin 1985), the decomposition of verbs is proposed for the purposes of accounting for systematic semantic-syntactic correspondences. This results in a series of problems for MT systems: inflexible verb sense definitions; difficulty in handling metaphor and new ..."
Abstract - Cited by 551 (4 self) - Add to MetaCart
... structure. As Levin has addressed (Levin 1985), the decomposition of verbs is proposed for the purposes of accounting for systematic semantic-syntactic correspondences. This results in a series of problems for MT systems: inflexible verb sense definitions; difficulty in handling metaphor

Semantics of Context-Free Languages

by Donald E. Knuth - In Mathematical Systems Theory , 1968
"... "Meaning " may be assigned to a string in a context-free language by defining "at-tributes " of the symbols in a derivation tree for that string. The attributes can be de-fined by functions associated with each production in the grammar. This paper examines the implications of th ..."
Abstract - Cited by 569 (0 self) - Add to MetaCart
. An algorithm is given which detects when such semantic rules could possibly lead to circular definition of some attributes. An example is given of a simple programming language defined with both inherited and synthesized attributes, and the method of definition is compared to other techniques for formal

Probabilistic Latent Semantic Analysis

by Thomas Hofmann - In Proc. of Uncertainty in Artificial Intelligence, UAI’99 , 1999
"... Probabilistic Latent Semantic Analysis is a novel statistical technique for the analysis of two--mode and co-occurrence data, which has applications in information retrieval and filtering, natural language processing, machine learning from text, and in related areas. Compared to standard Latent Sema ..."
Abstract - Cited by 771 (9 self) - Add to MetaCart
Semantic Analysis which stems from linear algebra and performs a Singular Value Decomposition of co-occurrence tables, the proposed method is based on a mixture decomposition derived from a latent class model. This results in a more principled approach which has a solid foundation in statistics. In order

Some methods for classification and analysis of multivariate observations

by J. Macqueen - In 5-th Berkeley Symposium on Mathematical Statistics and Probability , 1967
"... The main purpose of this paper is to describe a process for partitioning an N-dimensional population into k sets on the basis of a sample. The process, which is called 'k-means, ' appears to give partitions which are reasonably ..."
Abstract - Cited by 3055 (3 self) - Add to MetaCart
The main purpose of this paper is to describe a process for partitioning an N-dimensional population into k sets on the basis of a sample. The process, which is called 'k-means, ' appears to give partitions which are reasonably

Computing semantic relatedness using Wikipedia-based explicit semantic analysis

by Evgeniy Gabrilovich, Shaul Markovitch - In Proceedings of the 20th International Joint Conference on Artificial Intelligence , 2007
"... Computing semantic relatedness of natural language texts requires access to vast amounts of common-sense and domain-specific world knowledge. We propose Explicit Semantic Analysis (ESA), a novel method that represents the meaning of texts in a high-dimensional space of concepts derived from Wikipedi ..."
Abstract - Cited by 562 (9 self) - Add to MetaCart
Computing semantic relatedness of natural language texts requires access to vast amounts of common-sense and domain-specific world knowledge. We propose Explicit Semantic Analysis (ESA), a novel method that represents the meaning of texts in a high-dimensional space of concepts derived from
Next 10 →
Results 1 - 10 of 64,978
Powered by: Apache Solr
  • About CiteSeerX
  • Submit and Index Documents
  • Privacy Policy
  • Help
  • Data
  • Source
  • Contact Us

Developed at and hosted by The College of Information Sciences and Technology

© 2007-2019 The Pennsylvania State University