Results 1 - 10
of
8,148
Ideal spatial adaptation by wavelet shrinkage
- Biometrika
, 1994
"... With ideal spatial adaptation, an oracle furnishes information about how best to adapt a spatially variable estimator, whether piecewise constant, piecewise polynomial, variable knot spline, or variable bandwidth kernel, to the unknown function. Estimation with the aid of an oracle o ers dramatic ad ..."
Abstract
-
Cited by 1269 (5 self)
- Add to MetaCart
advantages over traditional linear estimation by nonadaptive kernels � however, it is a priori unclear whether such performance can be obtained by a procedure relying on the data alone. We describe a new principle for spatially-adaptive estimation: selective wavelet reconstruction. Weshowthatvariableknot
Singularity Detection And Processing With Wavelets
- IEEE Transactions on Information Theory
, 1992
"... Most of a signal information is often found in irregular structures and transient phenomena. We review the mathematical characterization of singularities with Lipschitz exponents. The main theorems that estimate local Lipschitz exponents of functions, from the evolution across scales of their wavele ..."
Abstract
-
Cited by 595 (13 self)
- Add to MetaCart
study separately. We show that the size of the oscillations can be measured from the wavelet transform local maxima. It has been shown that one and two-dimensional signals can be reconstructed from the local maxima of their wavelet transform [14]. As an application, we develop an algorithm that removes
Gradient projection for sparse reconstruction: Application to compressed sensing and other inverse problems
- IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING
, 2007
"... Many problems in signal processing and statistical inference involve finding sparse solutions to under-determined, or ill-conditioned, linear systems of equations. A standard approach consists in minimizing an objective function which includes a quadratic (squared ℓ2) error term combined with a spa ..."
Abstract
-
Cited by 539 (17 self)
- Add to MetaCart
sparseness-inducing (ℓ1) regularization term.Basis pursuit, the least absolute shrinkage and selection operator (LASSO), wavelet-based deconvolution, and compressed sensing are a few well-known examples of this approach. This paper proposes gradient projection (GP) algorithms for the bound
Adapting to unknown smoothness via wavelet shrinkage
- JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION
, 1995
"... We attempt to recover a function of unknown smoothness from noisy, sampled data. We introduce a procedure, SureShrink, which suppresses noise by thresholding the empirical wavelet coefficients. The thresholding is adaptive: a threshold level is assigned to each dyadic resolution level by the princip ..."
Abstract
-
Cited by 1006 (18 self)
- Add to MetaCart
also; if the unknown function has a smooth piece, the reconstruction is (essentially) as smooth as the mother wavelet will allow. The procedure is in a sense optimally smoothness-adaptive: it is near-minimax simultaneously over a whole interval of the Besov scale; the size of this interval depends
Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties
, 2001
"... Variable selection is fundamental to high-dimensional statistical modeling, including nonparametric regression. Many approaches in use are stepwise selection procedures, which can be computationally expensive and ignore stochastic errors in the variable selection process. In this article, penalized ..."
Abstract
-
Cited by 948 (62 self)
- Add to MetaCart
Variable selection is fundamental to high-dimensional statistical modeling, including nonparametric regression. Many approaches in use are stepwise selection procedures, which can be computationally expensive and ignore stochastic errors in the variable selection process. In this article, penalized
De-Noising By Soft-Thresholding
, 1992
"... Donoho and Johnstone (1992a) proposed a method for reconstructing an unknown function f on [0; 1] from noisy data di = f(ti)+ zi, iid i =0;:::;n 1, ti = i=n, zi N(0; 1). The reconstruction fn ^ is de ned in the wavelet domain by translating all the empirical wavelet coe cients of d towards 0 by an a ..."
Abstract
-
Cited by 1279 (14 self)
- Add to MetaCart
Donoho and Johnstone (1992a) proposed a method for reconstructing an unknown function f on [0; 1] from noisy data di = f(ti)+ zi, iid i =0;:::;n 1, ti = i=n, zi N(0; 1). The reconstruction fn ^ is de ned in the wavelet domain by translating all the empirical wavelet coe cients of d towards 0
Compressed sensing
, 2004
"... We study the notion of Compressed Sensing (CS) as put forward in [14] and related work [20, 3, 4]. The basic idea behind CS is that a signal or image, unknown but supposed to be compressible by a known transform, (eg. wavelet or Fourier), can be subjected to fewer measurements than the nominal numbe ..."
Abstract
-
Cited by 3625 (22 self)
- Add to MetaCart
We study the notion of Compressed Sensing (CS) as put forward in [14] and related work [20, 3, 4]. The basic idea behind CS is that a signal or image, unknown but supposed to be compressible by a known transform, (eg. wavelet or Fourier), can be subjected to fewer measurements than the nominal
Sparse MRI: The Application of Compressed Sensing for Rapid MR Imaging
- MAGNETIC RESONANCE IN MEDICINE 58:1182–1195
, 2007
"... The sparsity which is implicit in MR images is exploited to significantly undersample k-space. Some MR images such as angiograms are already sparse in the pixel representation; other, more complicated images have a sparse representation in some transform domain–for example, in terms of spatial finit ..."
Abstract
-
Cited by 538 (11 self)
- Add to MetaCart
finite-differences or their wavelet coefficients. According to the recently developed mathematical theory of compressedsensing, images with a sparse representation can be recovered from randomly undersampled k-space data, provided an appropriate nonlinear recovery scheme is used. Intuitively, artifacts
Unsupervised texture segmentation using Gabor filters
- Pattern Recognition
"... We presenf a texture segmentation algorithm inspired by the multi-channel filtering theory for visual information processing in the early stages of human visual system. The channels are characterized by a bank of Gabor filters that nearly uniformly covers the spatial-frequency domain. We propose a s ..."
Abstract
-
Cited by 616 (20 self)
- Add to MetaCart
systematic filter selection scheme which is based on reconstruction of the input image from the filtered images. Texture features are obtained by subjecting each (selected) filtered image to a nonlinear transformation and computing a measure of “energy ” in a window around each pixel. An unsupervised square
MEGA5: Molecular evolutionary genetics analysis using maximum . . .
, 2011
"... Comparative analysis of molecular sequence data is essential for reconstructing the evolutionary histories of species and inferring the nature and extent of selective forces shaping the evolution of genes and species. Here, we announce the release of Molecular Evolutionary Genetics Analysis version ..."
Abstract
-
Cited by 7284 (25 self)
- Add to MetaCart
Comparative analysis of molecular sequence data is essential for reconstructing the evolutionary histories of species and inferring the nature and extent of selective forces shaping the evolution of genes and species. Here, we announce the release of Molecular Evolutionary Genetics Analysis version
Results 1 - 10
of
8,148