• Documents
  • Authors
  • Tables
  • Log in
  • Sign up
  • MetaCart
  • DMCA
  • Donate

CiteSeerX logo

Advanced Search Include Citations

Tools

Sorted by:
Try your query at:
Semantic Scholar Scholar Academic
Google Bing DBLP
Results 1 - 10 of 14,403
Next 10 →

The 2005 pascal visual object classes challenge

by Mark Everingham, Andrew Zisserman, Christopher K. I. Williams, Luc Van Gool, Moray Allan, Christopher M. Bishop, Olivier Chapelle, Navneet Dalal, Thomas Deselaers, Gyuri Dorkó, Stefan Duffner, Jan Eichhorn, Jason D. R. Farquhar, Mario Fritz, Christophe Garcia, Tom Griffiths, Frederic Jurie, Daniel Keysers, Markus Koskela, Jorma Laaksonen, Diane Larlus, Bastian Leibe, Hongying Meng, Hermann Ney, Bernt Schiele, Cordelia Schmid, Edgar Seemann, John Shawe-taylor, Amos Storkey, Or Szedmak, Bill Triggs, Ilkay Ulusoy, Ville Viitaniemi, Jianguo Zhang , 2006
"... Abstract. The PASCAL Visual Object Classes Challenge ran from February to March 2005. The goal of the challenge was to recognize objects from a number of visual object classes in realistic scenes (i.e. not pre-segmented objects). Four object classes were selected: motorbikes, bicycles, cars and peop ..."
Abstract - Cited by 649 (23 self) - Add to MetaCart
Abstract. The PASCAL Visual Object Classes Challenge ran from February to March 2005. The goal of the challenge was to recognize objects from a number of visual object classes in realistic scenes (i.e. not pre-segmented objects). Four object classes were selected: motorbikes, bicycles, cars

Recognizing and Segmenting Objects in Clutter

by Mary Bravo Hany, Mary J. Bravo, Hany Farid
"... Introduction In a cluttered scene it may not be possible to segment objects without assistance from top-down processes (Barrow & Tenenbaum, 1981; Marr, 1982; Spelke, 1990; Ullman, 1997; Borenstein & Ullman, 2002; Bravo & Farid, 2003). Consider Figure 1 which shows a scene composed of se ..."
Abstract - Cited by 2 (0 self) - Add to MetaCart
Introduction In a cluttered scene it may not be possible to segment objects without assistance from top-down processes (Barrow & Tenenbaum, 1981; Marr, 1982; Spelke, 1990; Ullman, 1997; Borenstein & Ullman, 2002; Bravo & Farid, 2003). Consider Figure 1 which shows a scene composed

Interactive Graph Cuts for Optimal Boundary & Region Segmentation of Objects in N-D Images

by Yuri Y. Boykov , Marie-Pierre Jolly , 2001
"... In this paper we describe a new technique for general purpose interactive segmentation of N-dimensional images. The user marks certain pixels as “object” or “background” to provide hard constraints for segmentation. Additional soft constraints incorporate both boundary and region information. Graph ..."
Abstract - Cited by 1010 (20 self) - Add to MetaCart
In this paper we describe a new technique for general purpose interactive segmentation of N-dimensional images. The user marks certain pixels as “object” or “background” to provide hard constraints for segmentation. Additional soft constraints incorporate both boundary and region information. Graph

Region Competition: Unifying Snakes, Region Growing, and Bayes/MDL for Multi-band Image Segmentation

by Song Chun Zhu, Alan Yuille - IEEE Transactions on Pattern Analysis and Machine Intelligence , 1996
"... We present a novel statistical and variational approach to image segmentation based on a new algorithm named region competition. This algorithm is derived by minimizing a generalized Bayes/MDL criterion using the variational principle. The algorithm is guaranteed to converge to a local minimum and c ..."
Abstract - Cited by 774 (20 self) - Add to MetaCart
We present a novel statistical and variational approach to image segmentation based on a new algorithm named region competition. This algorithm is derived by minimizing a generalized Bayes/MDL criterion using the variational principle. The algorithm is guaranteed to converge to a local minimum

Segmenting Objects in Weakly Labeled Videos

by Mrigank Rochan, Shafin Rahman, Neil D. B. Bruce, Yang Wang
"... Abstract—We consider the problem of segmenting objects in weakly labeled video. A video is weakly labeled if it is associated with a tag (e.g. Youtube videos with tags) describing the main object present in the video. It is weakly labeled because the tag only indicates the presence/absence of the ob ..."
Abstract - Cited by 2 (2 self) - Add to MetaCart
Abstract—We consider the problem of segmenting objects in weakly labeled video. A video is weakly labeled if it is associated with a tag (e.g. Youtube videos with tags) describing the main object present in the video. It is weakly labeled because the tag only indicates the presence

Combined Object Categorization and Segmentation With An Implicit Shape Model

by Bastian Leibe, Ales Leonardis, Bernt Schiele - In ECCV workshop on statistical learning in computer vision , 2004
"... We present a method for object categorization in real-world scenes. Following a common consensus in the field, we do not assume that a figure-ground segmentation is available prior to recognition. However, in contrast to most standard approaches for object class recognition, our approach automatical ..."
Abstract - Cited by 406 (10 self) - Add to MetaCart
We present a method for object categorization in real-world scenes. Following a common consensus in the field, we do not assume that a figure-ground segmentation is available prior to recognition. However, in contrast to most standard approaches for object class recognition, our approach

W4: Real-time surveillance of people and their activities

by Ismail Haritaoglu, David Harwood, Larry S. Davis - IEEE Transactions on Pattern Analysis and Machine Intelligence , 2000
"... w4 is a real time visual surveillance system for detecting and tracking multiple people and monitoring their activities in an outdoor environment. It operates on monocular gray-scale video imagery, or on video imagery from an infrared camera. W4 employs a combination of shape analysis and tracking t ..."
Abstract - Cited by 709 (9 self) - Add to MetaCart
and track them. W4 can also determine whether people are carrying objects, and can segment objects from their silhouettes, and construct appearance models for them so they can be identified in subsequent frames. W4 can recognize events between people and objects, such as depositing an object, exchanging

Attributes make sense on segmented objects

by Zhenyang Li, Efstratios Gavves, Thomas Mensink, Cees G. M. Snoek
"... Abstract. In this paper we aim for object classification and segmentation by attributes. Where existing work considers attributes either for the global image or for the parts of the object, we propose, as our first novelty, to learn and extract attributes on segments containing the entire object. Ob ..."
Abstract - Add to MetaCart
Abstract. In this paper we aim for object classification and segmentation by attributes. Where existing work considers attributes either for the global image or for the parts of the object, we propose, as our first novelty, to learn and extract attributes on segments containing the entire object

Geodesic Active Contours

by Vicent Caselles, Ron Kimmel, Guillermo Sapiro , 1997
"... A novel scheme for the detection of object boundaries is presented. The technique is based on active contours evolving in time according to intrinsic geometric measures of the image. The evolving contours naturally split and merge, allowing the simultaneous detection of several objects and both in ..."
Abstract - Cited by 1425 (47 self) - Add to MetaCart
demonstrate its power. The results may be extended to 3D object segmentation as well.

Recognition-by-components: A theory of human image understanding

by Irving Biederman - Psychological Review , 1987
"... The perceptual recognition of objects is conceptualized to be a process in which the image of the input is segmented at regions of deep concavity into an arrangement of simple geometric components, such as blocks, cylinders, wedges, and cones. The fundamental assumption of the proposed theory, recog ..."
Abstract - Cited by 1272 (23 self) - Add to MetaCart
The perceptual recognition of objects is conceptualized to be a process in which the image of the input is segmented at regions of deep concavity into an arrangement of simple geometric components, such as blocks, cylinders, wedges, and cones. The fundamental assumption of the proposed theory
Next 10 →
Results 1 - 10 of 14,403
Powered by: Apache Solr
  • About CiteSeerX
  • Submit and Index Documents
  • Privacy Policy
  • Help
  • Data
  • Source
  • Contact Us

Developed at and hosted by The College of Information Sciences and Technology

© 2007-2019 The Pennsylvania State University