Results 11  20
of
3,011,060
DataGuides: Enabling Query Formulation and Optimization in Semistructured Databases
, 1997
"... In semistructured databases there is no schema fixed in advance. To provide the benefits of a schema in such environments, we introduce DataGuides: concise and accurate structural summaries of semistructured databases. DataGuides serve as dynamic schemas, generated from the database; they are ..."
Abstract

Cited by 566 (13 self)
 Add to MetaCart
; they are useful for browsing database structure, formulating queries, storing information such as statistics and sample values, and enabling query optimization. This paper presents the theoretical foundations of DataGuides along with an algorithm for their creation and an overview of incremental maintenance
A New Extension of the Kalman Filter to Nonlinear Systems
, 1997
"... The Kalman filter(KF) is one of the most widely used methods for tracking and estimation due to its simplicity, optimality, tractability and robustness. However, the application of the KF to nonlinear systems can be difficult. The most common approach is to use the Extended Kalman Filter (EKF) which ..."
Abstract

Cited by 747 (6 self)
 Add to MetaCart
that it is difficult to implement, difficult to tune, and only reliable for systems which are almost linear on the time scale of the update intervals. In this paper a new linear estimator is developed and demonstrated. Using the principle that a set of discretely sampled points can be used to parameterise mean
Probabilistic Inference Using Markov Chain Monte Carlo Methods
, 1993
"... Probabilistic inference is an attractive approach to uncertain reasoning and empirical learning in artificial intelligence. Computational difficulties arise, however, because probabilistic models with the necessary realism and flexibility lead to complex distributions over highdimensional spaces. R ..."
Abstract

Cited by 728 (24 self)
 Add to MetaCart
physics for over forty years, and, in the last few years, the related method of "Gibbs sampling" has been applied to problems of statistical inference. Concurrently, an alternative method for solving problems in statistical physics by means of dynamical simulation has been developed as well
Reconstruction and Representation of 3D Objects with Radial Basis Functions
 Computer Graphics (SIGGRAPH ’01 Conf. Proc.), pages 67–76. ACM SIGGRAPH
, 2001
"... We use polyharmonic Radial Basis Functions (RBFs) to reconstruct smooth, manifold surfaces from pointcloud data and to repair incomplete meshes. An object's surface is defined implicitly as the zero set of an RBF fitted to the given surface data. Fast methods for fitting and evaluating RBFs al ..."
Abstract

Cited by 500 (1 self)
 Add to MetaCart
advantages. The energyminimisation characterisation of polyharmonic splines result in a "smoothest" interpolant. This scaleindependent characterisation is wellsuited to reconstructing surfaces from nonuniformly sampled data. Holes are smoothly filled and surfaces smoothly extrapolated. We use a
Estimation of probabilities from sparse data for the language model component of a speech recognizer
 IEEE Transactions on Acoustics, Speech and Signal Processing
, 1987
"... AbstractThe description of a novel type of rngram language model is given. The model offers, via a nonlinear recursive procedure, a computation and space efficient solution to the problem of estimating probabilities from sparse data. This solution compares favorably to other proposed methods. Wh ..."
Abstract

Cited by 787 (2 self)
 Add to MetaCart
, and it is a problem that one always encounters while collecting frequency statistics on words and word sequences (mgrams) from a text of finite size. This means that even for a very large data collection, the maximum likelihood estimation method does not allow Turing’s estimate PT for a probability of a
Static Scheduling of Synchronous Data Flow Programs for Digital Signal Processing
 IEEE TRANSACTIONS ON COMPUTERS
, 1987
"... Large grain data flow (LGDF) programming is natural and convenient for describing digital signal processing (DSP) systems, but its runtime overhead is costly in real time or costsensitive applications. In some situations, designers are not willing to squander computing resources for the sake of pro ..."
Abstract

Cited by 587 (37 self)
 Add to MetaCart
flow (SDF) differs from traditional data flow in that the amount of data produced and consumed by a data flow node is specified a priori for each input and output. This is equivalent to specifying the relative sample rates in signal processing system. This means that the scheduling of SDF nodes need
VERY HIGH RESOLUTION INTERPOLATED CLIMATE SURFACES FOR GLOBAL LAND AREAS
, 2005
"... We developed interpolated climate surfaces for global land areas (excluding Antarctica) at a spatial resolution of 30 arc s (often referred to as 1km spatial resolution). The climate elements considered were monthly precipitation and mean, minimum, and maximum temperature. Input data were gathered ..."
Abstract

Cited by 507 (8 self)
 Add to MetaCart
We developed interpolated climate surfaces for global land areas (excluding Antarctica) at a spatial resolution of 30 arc s (often referred to as 1km spatial resolution). The climate elements considered were monthly precipitation and mean, minimum, and maximum temperature. Input data were gathered
High confidence visual recognition of persons by a test of statistical independence
 IEEE TRANS. ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE
, 1993
"... A method for rapid visual recognition of personal identity is described, based on the failure of a statistical test of independence. The most unique phenotypic feature visible in a person’s face is the detailed texture of each eye’s iris: An estimate of its statistical complexity in a sample of the ..."
Abstract

Cited by 598 (8 self)
 Add to MetaCart
A method for rapid visual recognition of personal identity is described, based on the failure of a statistical test of independence. The most unique phenotypic feature visible in a person’s face is the detailed texture of each eye’s iris: An estimate of its statistical complexity in a sample
Correlation between the Sample Mean and Sample Variance
"... This article obtains a general formula to find the correlation coefficient between the sample mean and variance. Several particular results for major nonnormal distributions are extracted to help students in classroom, clients during statistical consulting service. Key words: Skewness, kurtosis, no ..."
Abstract

Cited by 1 (0 self)
 Add to MetaCart
This article obtains a general formula to find the correlation coefficient between the sample mean and variance. Several particular results for major nonnormal distributions are extracted to help students in classroom, clients during statistical consulting service. Key words: Skewness, kurtosis
Critical values for cointegration tests
 Eds.), LongRun Economic Relationship: Readings in Cointegration
, 1991
"... This paper provides tables of critical values for some popular tests of cointegration and unit roots. Although these tables are necessarily based on computer simulations, they are much more accurate than those previously available. The results of the simulation experiments are summarized by means of ..."
Abstract

Cited by 479 (3 self)
 Add to MetaCart
This paper provides tables of critical values for some popular tests of cointegration and unit roots. Although these tables are necessarily based on computer simulations, they are much more accurate than those previously available. The results of the simulation experiments are summarized by means
Results 11  20
of
3,011,060