Results 1  10
of
133,184
Loopy Belief Propagation for Approximate Inference: An Empirical Study
 In Proceedings of Uncertainty in AI
, 1999
"... Recently, researchers have demonstrated that "loopy belief propagation"  the use of Pearl's polytree algorithm in a Bayesian network with loops  can perform well in the context of errorcorrecting codes. The most dramatic instance of this is the near Shannonlimit performa ..."
Abstract

Cited by 663 (15 self)
 Add to MetaCart
inference scheme in a more general setting? We compare the marginals computed using loopy propagation to the exact ones in four Bayesian network architectures, including two realworld networks: ALARM and QMR. We find that the loopy beliefs often converge and when they do, they give a good
Constructing Free Energy Approximations and Generalized Belief Propagation Algorithms
 IEEE Transactions on Information Theory
, 2005
"... Important inference problems in statistical physics, computer vision, errorcorrecting coding theory, and artificial intelligence can all be reformulated as the computation of marginal probabilities on factor graphs. The belief propagation (BP) algorithm is an efficient way to solve these problems t ..."
Abstract

Cited by 574 (13 self)
 Add to MetaCart
Important inference problems in statistical physics, computer vision, errorcorrecting coding theory, and artificial intelligence can all be reformulated as the computation of marginal probabilities on factor graphs. The belief propagation (BP) algorithm is an efficient way to solve these problems
Factor Graphs and the SumProduct Algorithm
 IEEE TRANSACTIONS ON INFORMATION THEORY
, 1998
"... A factor graph is a bipartite graph that expresses how a "global" function of many variables factors into a product of "local" functions. Factor graphs subsume many other graphical models including Bayesian networks, Markov random fields, and Tanner graphs. Following one simple c ..."
Abstract

Cited by 1761 (69 self)
 Add to MetaCart
be derived as specific instances of the sumproduct algorithm, including the forward/backward algorithm, the Viterbi algorithm, the iterative "turbo" decoding algorithm, Pearl's belief propagation algorithm for Bayesian networks, the Kalman filter, and certain fast Fourier transform algorithms.
Dynamic Bayesian Networks: Representation, Inference and Learning
, 2002
"... Modelling sequential data is important in many areas of science and engineering. Hidden Markov models (HMMs) and Kalman filter models (KFMs) are popular for this because they are simple and flexible. For example, HMMs have been used for speech recognition and biosequence analysis, and KFMs have bee ..."
Abstract

Cited by 754 (3 self)
 Add to MetaCart
belief propagation; a way of
applying RaoBlackwellised particle filtering to DBNs in general, and the SLAM (simultaneous localization
and mapping) problem in particular; a way of extending the structural EM algorithm to DBNs; and a variety of different applications of DBNs. However, perhaps the main
A family of algorithms for approximate Bayesian inference
, 2001
"... One of the major obstacles to using Bayesian methods for pattern recognition has been its computational expense. This thesis presents an approximation technique that can perform Bayesian inference faster and more accurately than previously possible. This method, "Expectation Propagation," ..."
Abstract

Cited by 360 (11 self)
 Add to MetaCart
distribution with a simpler distribution, which is close in the sense of KLdivergence. Expectation Propagation exploits the best of both algorithms: the generality of assumeddensity filtering and the accuracy of loopy belief propagation. Loopy belief propagation, because it propagates exact belief states
The generalized distributive law
 Information Theory, IEEE Transactions on
"... Abstract—In this semitutorial paper we discuss a general message passing algorithm, which we call the generalized distributive law (GDL). The GDL is a synthesis of the work of many authors in the information theory, digital communications, signal processing, statistics, and artificial intelligence ..."
Abstract

Cited by 358 (2 self)
 Add to MetaCart
communities. It includes as special cases the Baum–Welch algorithm, the fast Fourier transform (FFT) on any finite Abelian group, the Gallager–Tanner–Wiberg decoding algorithm, Viterbi’s algorithm, the BCJR algorithm, Pearl’s “belief propagation ” algorithm, the Shafer–Shenoy probability propagation
Axioms for probability and belieffunction propagation
 Uncertainty in Artificial Intelligence
, 1990
"... In this paper, we describe an abstract framework and axioms under which exact local computation of marginals is possible. The primitive objects of the framework are variables and valuations. The primitive operators of the framework are combination and marginalization. These operate on valuations. We ..."
Abstract

Cited by 161 (23 self)
 Add to MetaCart
In this paper, we describe an abstract framework and axioms under which exact local computation of marginals is possible. The primitive objects of the framework are variables and valuations. The primitive operators of the framework are combination and marginalization. These operate on valuations
A Revolution: Belief Propagation in Graphs With Cycles
 In Neural Information Processing Systems
, 1997
"... Until recently, artificial intelligence researchers have frowned upon the application of probability propagation in Bayesian belief networks that have cycles. The probability propagation algorithm is only exact in networks that are cyclefree. However, it has recently been discovered that the tw ..."
Abstract

Cited by 143 (4 self)
 Add to MetaCart
Until recently, artificial intelligence researchers have frowned upon the application of probability propagation in Bayesian belief networks that have cycles. The probability propagation algorithm is only exact in networks that are cyclefree. However, it has recently been discovered
Approximatemin* constraint node updating for LDPC code decoding
 Proc. IEEE Military Comm. Conf
, 2003
"... This work inrmduces a technique for updaring messages rhar originare ar rke consrrainr nodes of bipartite graphs in LowDensity ParityCheck codes. The rechnique computes only WO ourgoing magnitudes ar each consrrainr node and exhibirs no measurable performance loss as compared ro exact belief prop ..."
Abstract

Cited by 13 (1 self)
 Add to MetaCart
This work inrmduces a technique for updaring messages rhar originare ar rke consrrainr nodes of bipartite graphs in LowDensity ParityCheck codes. The rechnique computes only WO ourgoing magnitudes ar each consrrainr node and exhibirs no measurable performance loss as compared ro exact belief
Dependency parsing by belief propagation
 In Proceedings of EMNLP
, 2008
"... We formulate dependency parsing as a graphical model with the novel ingredient of global constraints. We show how to apply loopy belief propagation (BP), a simple and effective tool for approximate learning and inference. As a parsing algorithm, BP is both asymptotically and empirically efficient. E ..."
Abstract

Cited by 84 (9 self)
 Add to MetaCart
We formulate dependency parsing as a graphical model with the novel ingredient of global constraints. We show how to apply loopy belief propagation (BP), a simple and effective tool for approximate learning and inference. As a parsing algorithm, BP is both asymptotically and empirically efficient
Results 1  10
of
133,184