• Documents
  • Authors
  • Tables
  • Log in
  • Sign up
  • MetaCart
  • DMCA
  • Donate

CiteSeerX logo

Advanced Search Include Citations

Tools

Sorted by:
Try your query at:
Semantic Scholar Scholar Academic
Google Bing DBLP
Results 1 - 10 of 16,743
Next 10 →

Probabilistic Inference Using Markov Chain Monte Carlo Methods

by Radford M. Neal , 1993
"... Probabilistic inference is an attractive approach to uncertain reasoning and empirical learning in artificial intelligence. Computational difficulties arise, however, because probabilistic models with the necessary realism and flexibility lead to complex distributions over high-dimensional spaces. R ..."
Abstract - Cited by 736 (24 self) - Add to MetaCart
physics for over forty years, and, in the last few years, the related method of "Gibbs sampling" has been applied to problems of statistical inference. Concurrently, an alternative method for solving problems in statistical physics by means of dynamical simulation has been developed as well

Loopy belief propagation for approximate inference: An empirical study. In:

by Kevin P Murphy , Yair Weiss , Michael I Jordan - Proceedings of Uncertainty in AI, , 1999
"... Abstract Recently, researchers have demonstrated that "loopy belief propagation" -the use of Pearl's polytree algorithm in a Bayesian network with loops -can perform well in the context of error-correcting codes. The most dramatic instance of this is the near Shannon-limit performanc ..."
Abstract - Cited by 676 (15 self) - Add to MetaCart
-limit performance of "Turbo Codes" -codes whose decoding algorithm is equivalent to loopy belief propagation in a chain-structured Bayesian network. In this paper we ask: is there something spe cial about the error-correcting code context, or does loopy propagation work as an ap proximate inference scheme

Relational inference for wikification

by Xiao Cheng, Dan Roth - In EMNLP , 2013
"... Wikification, commonly referred to as Disam-biguation to Wikipedia (D2W), is the task of identifying concepts and entities in text and disambiguating them into the most specific corresponding Wikipedia pages. Previous ap-proaches to D2W focused on the use of lo-cal and global statistics over the giv ..."
Abstract - Cited by 16 (1 self) - Add to MetaCart
to Wikification by incorpo-rating, along with statistical methods, richer relational analysis of the text. We provide an extensible, efficient and modular Integer Lin-ear Programming (ILP) formulation of Wik-ification that incorporates the entity-relation inference problem, and show that the ability to identify

A Bayesian Framework for the Analysis of Microarray Expression Data: Regularized t-Test and Statistical Inferences of Gene Changes

by Pierre Baldi, Anthony D. Long - Bioinformatics , 2001
"... Motivation: DNA microarrays are now capable of providing genome-wide patterns of gene expression across many different conditions. The first level of analysis of these patterns requires determining whether observed differences in expression are significant or not. Current methods are unsatisfactory ..."
Abstract - Cited by 491 (6 self) - Add to MetaCart
with neighboring genes. An additional hyperparameter, inversely related to the number of empirical observations, determines the strength of the background variance. Simulations show that these point estimates, combined with a t-test, provide a systematic inference approach that compares favorably with simple t

A symbolic-connectionist theory of relational inference and generalization

by John E. Hummel, Keith J. Holyoak - Psychological Review , 2003
"... The authors present a theory of how relational inference and generalization can be accomplished within a cognitive architecture that is psychologically and neurally realistic. Their proposal is a form of symbolic connectionism: a connectionist system based on distributed representations of concept m ..."
Abstract - Cited by 134 (26 self) - Add to MetaCart
The authors present a theory of how relational inference and generalization can be accomplished within a cognitive architecture that is psychologically and neurally realistic. Their proposal is a form of symbolic connectionism: a connectionist system based on distributed representations of concept

Points-to Analysis in Almost Linear Time

by Bjarne Steensgaard , 1996
"... We present an interprocedural flow-insensitive points-to analysis based on type inference methods with an almost linear time cost complexity. To our knowledge, this is the asymptotically fastest non-trivial interprocedural points-to analysis algorithm yet described. The algorithm is based on a non-s ..."
Abstract - Cited by 595 (3 self) - Add to MetaCart
We present an interprocedural flow-insensitive points-to analysis based on type inference methods with an almost linear time cost complexity. To our knowledge, this is the asymptotically fastest non-trivial interprocedural points-to analysis algorithm yet described. The algorithm is based on a non

A Bayesian method for the induction of probabilistic networks from data

by Gregory F. Cooper, EDWARD HERSKOVITS - MACHINE LEARNING , 1992
"... This paper presents a Bayesian method for constructing probabilistic networks from databases. In particular, we focus on constructing Bayesian belief networks. Potential applications include computer-assisted hypothesis testing, automated scientific discovery, and automated construction of probabili ..."
Abstract - Cited by 1400 (31 self) - Add to MetaCart
of probabilistic expert systems. We extend the basic method to handle missing data and hidden (latent) variables. We show how to perform probabilistic inference by averaging over the inferences of multiple belief networks. Results are presented of a preliminary evaluation of an algorithm for constructing a belief

An analysis of transformations

by G. E. P. Box, D. R. Cox - Journal of the Royal Statistical Society. Series B (Methodological , 1964
"... In the analysis of data it is often assumed that observations y,, y,,...,y, are independently normally distributed with constant variance and with expectations specified by a model linear in a set of parameters 0. In this paper we make the less restrictive assumption that such a normal, homoscedasti ..."
Abstract - Cited by 1067 (3 self) - Add to MetaCart
, homoscedastic, linear model is appropriate after some suitable transformation has been applied to the y's. Inferences about the transformation and about the parameters of the linear model are made by computing the likelihood function and the relevant posterior distribution. The contributions of normality

A comparison of bayesian methods for haplotype reconstruction from population genotype data.

by Matthew Stephens , Peter Donnelly , Dr Matthew Stephens - Am J Hum Genet , 2003
"... In this report, we compare and contrast three previously published Bayesian methods for inferring haplotypes from genotype data in a population sample. We review the methods, emphasizing the differences between them in terms of both the models ("priors") they use and the computational str ..."
Abstract - Cited by 557 (7 self) - Add to MetaCart
operates through the transmission of chromosomal segments. Experimental methods for haplotype determination exist, but they are currently timeconsuming and expensive. Statistical methods for inferring haplotypes are therefore of considerable interest. In some studies, data may be available on related

Empirical Bayes Analysis of a Microarray Experiment

by Bradley Efron, Robert Tibshirani, John D. Storey, Virginia Tusher - Journal of the American Statistical Association , 2001
"... Microarrays are a novel technology that facilitates the simultaneous measurement of thousands of gene expression levels. A typical microarray experiment can produce millions of data points, raising serious problems of data reduction, and simultaneous inference. We consider one such experiment in whi ..."
Abstract - Cited by 492 (20 self) - Add to MetaCart
simultaneous inferences concerning which genes were affected by the radiation. Although our focus is on one speci � c experiment, the proposed methods can be applied quite generally. The empirical Bayes inferences are closely related to the frequentist false discovery rate (FDR) criterion. 1.
Next 10 →
Results 1 - 10 of 16,743
Powered by: Apache Solr
  • About CiteSeerX
  • Submit and Index Documents
  • Privacy Policy
  • Help
  • Data
  • Source
  • Contact Us

Developed at and hosted by The College of Information Sciences and Technology

© 2007-2019 The Pennsylvania State University