Results 1 - 10
of
10,157
Reinforcement learning: a survey
- Journal of Artificial Intelligence Research
, 1996
"... This paper surveys the field of reinforcement learning from a computer-science perspective. It is written to be accessible to researchers familiar with machine learning. Both the historical basis of the field and a broad selection of current work are summarized. Reinforcement learning is the problem ..."
Abstract
-
Cited by 1714 (25 self)
- Add to MetaCart
This paper surveys the field of reinforcement learning from a computer-science perspective. It is written to be accessible to researchers familiar with machine learning. Both the historical basis of the field and a broad selection of current work are summarized. Reinforcement learning
Reinforcement Learning I: Introduction
, 1998
"... In which we try to give a basic intuitive sense of what reinforcement learning is and how it differs and relates to other fields, e.g., supervised learning and neural networks, genetic algorithms and artificial life, control theory. Intuitively, RL is trial and error (variation and selection, search ..."
Abstract
-
Cited by 5614 (118 self)
- Add to MetaCart
In which we try to give a basic intuitive sense of what reinforcement learning is and how it differs and relates to other fields, e.g., supervised learning and neural networks, genetic algorithms and artificial life, control theory. Intuitively, RL is trial and error (variation and selection
Hierarchical Reinforcement Learning with the MAXQ Value Function Decomposition
- Journal of Artificial Intelligence Research
, 2000
"... This paper presents a new approach to hierarchical reinforcement learning based on decomposing the target Markov decision process (MDP) into a hierarchy of smaller MDPs and decomposing the value function of the target MDP into an additive combination of the value functions of the smaller MDPs. Th ..."
Abstract
-
Cited by 443 (6 self)
- Add to MetaCart
This paper presents a new approach to hierarchical reinforcement learning based on decomposing the target Markov decision process (MDP) into a hierarchy of smaller MDPs and decomposing the value function of the target MDP into an additive combination of the value functions of the smaller MDPs
Motivated Reinforcement Learning
, 2001
"... The standard reinforcement learning view of the involvement of neuromodulatory systems in instrumental conditioning includes a rather straightforward conception of motivation as prediction of sum future reward. Competition between actions is based on the motivating characteristics of their consequen ..."
Abstract
-
Cited by 332 (15 self)
- Add to MetaCart
The standard reinforcement learning view of the involvement of neuromodulatory systems in instrumental conditioning includes a rather straightforward conception of motivation as prediction of sum future reward. Competition between actions is based on the motivating characteristics
Predicting How People Play Games: Reinforcement Learning . . .
- AMERICAN ECONOMIC REVIEW
, 1998
"... ..."
Reinforcement learning with hierarchies of machines
- Advances in Neural Information Processing Systems 10
, 1998
"... We present a new approach to reinforcement learning in which the policies considered by the learning process are constrained by hierarchies of partially specified machines. This allows for the use of prior knowledge to reduce the search space and provides a framework in which knowledge can be transf ..."
Abstract
-
Cited by 285 (11 self)
- Add to MetaCart
We present a new approach to reinforcement learning in which the policies considered by the learning process are constrained by hierarchies of partially specified machines. This allows for the use of prior knowledge to reduce the search space and provides a framework in which knowledge can
Between MDPs and Semi-MDPs: A Framework for Temporal Abstraction in Reinforcement Learning
, 1999
"... Learning, planning, and representing knowledge at multiple levels of temporal abstraction are key, longstanding challenges for AI. In this paper we consider how these challenges can be addressed within the mathematical framework of reinforcement learning and Markov decision processes (MDPs). We exte ..."
Abstract
-
Cited by 569 (38 self)
- Add to MetaCart
Learning, planning, and representing knowledge at multiple levels of temporal abstraction are key, longstanding challenges for AI. In this paper we consider how these challenges can be addressed within the mathematical framework of reinforcement learning and Markov decision processes (MDPs). We
Algorithms for Inverse Reinforcement Learning
- in Proc. 17th International Conf. on Machine Learning
, 2000
"... This paper addresses the problem of inverse reinforcement learning (IRL) in Markov decision processes, that is, the problem of extracting a reward function given observed, optimal behaviour. IRL may be useful for apprenticeship learning to acquire skilled behaviour, and for ascertaining the re ..."
Abstract
-
Cited by 314 (6 self)
- Add to MetaCart
This paper addresses the problem of inverse reinforcement learning (IRL) in Markov decision processes, that is, the problem of extracting a reward function given observed, optimal behaviour. IRL may be useful for apprenticeship learning to acquire skilled behaviour, and for ascertaining
Markov games as a framework for multi-agent reinforcement learning
- IN PROCEEDINGS OF THE ELEVENTH INTERNATIONAL CONFERENCE ON MACHINE LEARNING
, 1994
"... In the Markov decision process (MDP) formalization of reinforcement learning, a single adaptive agent interacts with an environment defined by a probabilistic transition function. In this solipsistic view, secondary agents can only be part of the environment and are therefore fixed in their behavior ..."
Abstract
-
Cited by 601 (13 self)
- Add to MetaCart
In the Markov decision process (MDP) formalization of reinforcement learning, a single adaptive agent interacts with an environment defined by a probabilistic transition function. In this solipsistic view, secondary agents can only be part of the environment and are therefore fixed
Policy gradient methods for reinforcement learning with function approximation.
- In NIPS,
, 1999
"... Abstract Function approximation is essential to reinforcement learning, but the standard approach of approximating a value function and determining a policy from it has so far proven theoretically intractable. In this paper we explore an alternative approach in which the policy is explicitly repres ..."
Abstract
-
Cited by 439 (20 self)
- Add to MetaCart
Abstract Function approximation is essential to reinforcement learning, but the standard approach of approximating a value function and determining a policy from it has so far proven theoretically intractable. In this paper we explore an alternative approach in which the policy is explicitly
Results 1 - 10
of
10,157