Results 1  10
of
478
THE STABILITY OF REGULARIZED ORTHOGONAL MATCHING PURSUIT ALGORITHM
"... This paper studies a fundamental problem that arises in sparse representation and compressed sensing community: can greedy algorithms give us a stable recovery from incomplete and contaminated observations? Using the Regularized Orthogonal Matching Pursuit (ROMP) algorithm, a modified version of Ort ..."
Abstract

Cited by 1 (0 self)
 Add to MetaCart
This paper studies a fundamental problem that arises in sparse representation and compressed sensing community: can greedy algorithms give us a stable recovery from incomplete and contaminated observations? Using the Regularized Orthogonal Matching Pursuit (ROMP) algorithm, a modified version
Algorithm: Regularized Orthogonal Matching Pursuit (ROMP)
, 707
"... Abstract—This paper seeks to bridge the two major algorithmic approaches to sparse signal recovery from an incomplete set of linear measurements – L1minimization methods and iterative methods (Matching Pursuits). We find a simple regularized version of the Orthogonal Matching Pursuit (ROMP) which h ..."
Abstract
 Add to MetaCart
Abstract—This paper seeks to bridge the two major algorithmic approaches to sparse signal recovery from an incomplete set of linear measurements – L1minimization methods and iterative methods (Matching Pursuits). We find a simple regularized version of the Orthogonal Matching Pursuit (ROMP) which
Uniform Uncertainty Principle and signal recovery via Regularized Orthogonal Matching Pursuit
, 2007
"... This paper seeks to bridge the two major algorithmic approaches to sparse signal recovery from an incomplete set of linear measurements – L1minimization methods and iterative methods (Matching Pursuits). We find a simple regularized version of Orthogonal Matching Pursuit (ROMP) which has advantage ..."
Abstract

Cited by 188 (8 self)
 Add to MetaCart
This paper seeks to bridge the two major algorithmic approaches to sparse signal recovery from an incomplete set of linear measurements – L1minimization methods and iterative methods (Matching Pursuits). We find a simple regularized version of Orthogonal Matching Pursuit (ROMP) which has
Signal Recovery From Incomplete and Inaccurate Measurements via Regularized Orthogonal Matching Pursuit
, 2007
"... We demonstrate a simple greedy algorithm that can reliably recover a vector v ∈ R d from incomplete and inaccurate measurements x = Φv + e. Here Φ is a N × d measurement matrix with N ≪ d, and e is an error vector. Our algorithm, Regularized Orthogonal Matching Pursuit (ROMP), seeks to close the ga ..."
Abstract

Cited by 115 (4 self)
 Add to MetaCart
We demonstrate a simple greedy algorithm that can reliably recover a vector v ∈ R d from incomplete and inaccurate measurements x = Φv + e. Here Φ is a N × d measurement matrix with N ≪ d, and e is an error vector. Our algorithm, Regularized Orthogonal Matching Pursuit (ROMP), seeks to close
Signal recovery from random measurements via Orthogonal Matching Pursuit
 IEEE TRANS. INFORM. THEORY
, 2007
"... This technical report demonstrates theoretically and empirically that a greedy algorithm called Orthogonal Matching Pursuit (OMP) can reliably recover a signal with m nonzero entries in dimension d given O(m ln d) random linear measurements of that signal. This is a massive improvement over previous ..."
Abstract

Cited by 802 (9 self)
 Add to MetaCart
This technical report demonstrates theoretically and empirically that a greedy algorithm called Orthogonal Matching Pursuit (OMP) can reliably recover a signal with m nonzero entries in dimension d given O(m ln d) random linear measurements of that signal. This is a massive improvement over
Orthogonal matching pursuit: Recursive function approximation with applications to wavelet decomposition
 in Conference Record of The TwentySeventh Asilomar Conference on Signals, Systems and Computers
, 1993
"... In this paper we describe a recursive algorithm to compute representations of functions with respect to nonorthogonal and possibly overcomplete dictionaries of elementary building blocks e.g. aiEne (wa.velet) frames. We propoeea modification to the Matching Pursuit algorithm of Mallat and Zhang (199 ..."
Abstract

Cited by 637 (1 self)
 Add to MetaCart
(1992) that maintains full backward orthogonality of the residual (error) at every step and thereby leads to improved convergence. We refer to this modified algorithm as Orthogonal Matching Pursuit (OMP). It is shown that all additional computation required for the OMP al gorithm may be performed
ATOMIC DECOMPOSITION BY BASIS PURSUIT
, 1995
"... The TimeFrequency and TimeScale communities have recently developed a large number of overcomplete waveform dictionaries  stationary wavelets, wavelet packets, cosine packets, chirplets, and warplets, to name a few. Decomposition into overcomplete systems is not unique, and several methods for d ..."
Abstract

Cited by 2728 (61 self)
 Add to MetaCart
for decomposition have been proposed, including the Method of Frames (MOF), Matching Pursuit (MP), and, for special dictionaries, the Best Orthogonal Basis (BOB). Basis Pursuit (BP) is a principle for decomposing a signal into an "optimal" superposition of dictionary elements, where optimal means having
Greed is Good: Algorithmic Results for Sparse Approximation
, 2004
"... This article presents new results on using a greedy algorithm, orthogonal matching pursuit (OMP), to solve the sparse approximation problem over redundant dictionaries. It provides a sufficient condition under which both OMP and Donoho’s basis pursuit (BP) paradigm can recover the optimal representa ..."
Abstract

Cited by 916 (9 self)
 Add to MetaCart
This article presents new results on using a greedy algorithm, orthogonal matching pursuit (OMP), to solve the sparse approximation problem over redundant dictionaries. It provides a sufficient condition under which both OMP and Donoho’s basis pursuit (BP) paradigm can recover the optimal
KSVD: An Algorithm for Designing Overcomplete Dictionaries for Sparse Representation
, 2006
"... In recent years there has been a growing interest in the study of sparse representation of signals. Using an overcomplete dictionary that contains prototype signalatoms, signals are described by sparse linear combinations of these atoms. Applications that use sparse representation are many and inc ..."
Abstract

Cited by 935 (41 self)
 Add to MetaCart
and include compression, regularization in inverse problems, feature extraction, and more. Recent activity in this field has concentrated mainly on the study of pursuit algorithms that decompose signals with respect to a given dictionary. Designing dictionaries to better fit the above model can be done
Sparse solution of underdetermined linear equations by stagewise orthogonal matching pursuit
, 2006
"... Finding the sparsest solution to underdetermined systems of linear equations y = Φx is NPhard in general. We show here that for systems with ‘typical’/‘random ’ Φ, a good approximation to the sparsest solution is obtained by applying a fixed number of standard operations from linear algebra. Our pr ..."
Abstract

Cited by 274 (22 self)
 Add to MetaCart
proposal, Stagewise Orthogonal Matching Pursuit (StOMP), successively transforms the signal into a negligible residual. Starting with initial residual r0 = y, at the sth stage it forms the ‘matched filter ’ Φ T rs−1, identifies all coordinates with amplitudes exceeding a speciallychosen threshold, solves
Results 1  10
of
478