Results 1  10
of
10,412
Manifold regularization: A geometric framework for learning from labeled and unlabeled examples
 JOURNAL OF MACHINE LEARNING RESEARCH
, 2006
"... We propose a family of learning algorithms based on a new form of regularization that allows us to exploit the geometry of the marginal distribution. We focus on a semisupervised framework that incorporates labeled and unlabeled data in a generalpurpose learner. Some transductive graph learning al ..."
Abstract

Cited by 578 (16 self)
 Add to MetaCart
We propose a family of learning algorithms based on a new form of regularization that allows us to exploit the geometry of the marginal distribution. We focus on a semisupervised framework that incorporates labeled and unlabeled data in a generalpurpose learner. Some transductive graph learning
A Bayesian Framework for the Analysis of Microarray Expression Data: Regularized tTest and Statistical Inferences of Gene Changes
 Bioinformatics
, 2001
"... Motivation: DNA microarrays are now capable of providing genomewide patterns of gene expression across many different conditions. The first level of analysis of these patterns requires determining whether observed differences in expression are significant or not. Current methods are unsatisfactory ..."
Abstract

Cited by 491 (6 self)
 Add to MetaCart
distributions, parameterized by corresponding means and variances with hierarchical prior distributions. We derive point estimates for both parameters and hyperparameters, and regularized expressions for the variance of each gene by combining the empirical variance with a local background variance associated
Estimating the Support of a HighDimensional Distribution
, 1999
"... Suppose you are given some dataset drawn from an underlying probability distribution P and you want to estimate a "simple" subset S of input space such that the probability that a test point drawn from P lies outside of S is bounded by some a priori specified between 0 and 1. We propo ..."
Abstract

Cited by 783 (29 self)
 Add to MetaCart
Suppose you are given some dataset drawn from an underlying probability distribution P and you want to estimate a "simple" subset S of input space such that the probability that a test point drawn from P lies outside of S is bounded by some a priori specified between 0 and 1. We
Footprint evaluation for volume rendering
 Computer Graphics
, 1990
"... This paper presents a forward mapping rendering algorithm to display regular volumetric grids that may not have the same spacings in the three grid directions. It takes advantage of the fact that convolution can be thought of as distributing energy from input samples into space. The renderer calcul ..."
Abstract

Cited by 501 (1 self)
 Add to MetaCart
This paper presents a forward mapping rendering algorithm to display regular volumetric grids that may not have the same spacings in the three grid directions. It takes advantage of the fact that convolution can be thought of as distributing energy from input samples into space. The renderer
Convolution Kernels on Discrete Structures
, 1999
"... We introduce a new method of constructing kernels on sets whose elements are discrete structures like strings, trees and graphs. The method can be applied iteratively to build a kernel on an infinite set from kernels involving generators of the set. The family of kernels generated generalizes the fa ..."
Abstract

Cited by 506 (0 self)
 Add to MetaCart
the family of radial basis kernels. It can also be used to define kernels in the form of joint Gibbs probability distributions. Kernels can be built from hidden Markov random elds, generalized regular expressions, pairHMMs, or ANOVA decompositions. Uses of the method lead to open problems involving
Modeling and Forecasting Realized Volatility
, 2002
"... this paper is built. First, although raw returns are clearly leptokurtic, returns standardized by realized volatilities are approximately Gaussian. Second, although the distributions of realized volatilities are clearly rightskewed, the distributions of the logarithms of realized volatilities are a ..."
Abstract

Cited by 549 (50 self)
 Add to MetaCart
this paper is built. First, although raw returns are clearly leptokurtic, returns standardized by realized volatilities are approximately Gaussian. Second, although the distributions of realized volatilities are clearly rightskewed, the distributions of the logarithms of realized volatilities
Internet time synchronization: The network time protocol
, 1989
"... This memo describes the Network Time Protocol (NTP) designed to distribute time information in a large, diverse internet system operating at speeds from mundane to lightwave. It uses a returnabletime architecture in which a distributed subnet of time servers operating in a selforganizing, hierarchi ..."
Abstract

Cited by 628 (15 self)
 Add to MetaCart
This memo describes the Network Time Protocol (NTP) designed to distribute time information in a large, diverse internet system operating at speeds from mundane to lightwave. It uses a returnabletime architecture in which a distributed subnet of time servers operating in a self
Measuring Concurrency of Regular Distributed Computations
, 1994
"... In this paper, we present a concurrency measure that is especially adapted to distributed programs that exhibit regular runtime behaviours. Such programs are frequently obtained by automatic parallelization of sequential code. This measure is based on the antichain lattice of the partial order that ..."
Abstract

Cited by 5 (0 self)
 Add to MetaCart
In this paper, we present a concurrency measure that is especially adapted to distributed programs that exhibit regular runtime behaviours. Such programs are frequently obtained by automatic parallelization of sequential code. This measure is based on the antichain lattice of the partial order
On orthogonal polynomials with regularly distributed zeros
 Proc. London Math. Soc
, 1974
"... Let dcx(x) be a nonnegative measure on ( oo, oo) for which all moments tt,n (do,) = J xmda(x) (m = 0, 1,) ..."
Abstract

Cited by 5 (0 self)
 Add to MetaCart
Let dcx(x) be a nonnegative measure on ( oo, oo) for which all moments tt,n (do,) = J xmda(x) (m = 0, 1,)
SCANMACS  Scan Macros for Regularly Distributed Arrays
"... SCANMACS is a portable set of C macros for instantiating families of high performance scan (parallel prefix) functions for use on regularly distributed arrays. An implementation of the scan intrinsics in the HPF standard library is described, including modifications to the compiler. 1 Introduction ..."
Abstract
 Add to MetaCart
SCANMACS is a portable set of C macros for instantiating families of high performance scan (parallel prefix) functions for use on regularly distributed arrays. An implementation of the scan intrinsics in the HPF standard library is described, including modifications to the compiler. 1 Introduction
Results 1  10
of
10,412