Results 1  10
of
2,537,541
On the rank minimization problem
 In: Proceedings of the 2004 American Control Conference
, 2004
"... Abstract — After a brief overview of the problem of finding the extremal (minimum or maximum) rank positive semidefinite matrix subject to matrix inequalities, we identify a few new classes of such problems that can be efficiently solved. We then proceed to present an algorithm for solving the gene ..."
Abstract

Cited by 6 (0 self)
 Add to MetaCart
the general class of rank minimization problems. Index Terms — Rank minimization under LMI constraints, semidefinite programming, nonconvex quadratically constrained quadratic programs I.
Guaranteed minimumrank solutions of linear matrix equations via nuclear norm minimization
, 2007
"... The affine rank minimization problem consists of finding a matrix of minimum rank that satisfies a given system of linear equality constraints. Such problems have appeared in the literature of a diverse set of fields including system identification and control, Euclidean embedding, and collaborative ..."
Abstract

Cited by 568 (23 self)
 Add to MetaCart
The affine rank minimization problem consists of finding a matrix of minimum rank that satisfies a given system of linear equality constraints. Such problems have appeared in the literature of a diverse set of fields including system identification and control, Euclidean embedding
TopicSensitive PageRank
, 2002
"... In the original PageRank algorithm for improving the ranking of searchquery results, a single PageRank vector is computed, using the link structure of the Web, to capture the relative "importance" of Web pages, independent of any particular search query. To yield more accurate search resu ..."
Abstract

Cited by 535 (10 self)
 Add to MetaCart
In the original PageRank algorithm for improving the ranking of searchquery results, a single PageRank vector is computed, using the link structure of the Web, to capture the relative "importance" of Web pages, independent of any particular search query. To yield more accurate search
Rank Aggregation Methods for the Web
, 2010
"... We consider the problem of combining ranking results from various sources. In the context of the Web, the main applications include building metasearch engines, combining ranking functions, selecting documents based on multiple criteria, and improving search precision through word associations. Wed ..."
Abstract

Cited by 473 (6 self)
 Add to MetaCart
We consider the problem of combining ranking results from various sources. In the context of the Web, the main applications include building metasearch engines, combining ranking functions, selecting documents based on multiple criteria, and improving search precision through word associations
Learning to rank using gradient descent
 In ICML
, 2005
"... We investigate using gradient descent methods for learning ranking functions; we propose a simple probabilistic cost function, and we introduce RankNet, an implementation of these ideas using a neural network to model the underlying ranking function. We present test results on toy data and on data f ..."
Abstract

Cited by 510 (17 self)
 Add to MetaCart
We investigate using gradient descent methods for learning ranking functions; we propose a simple probabilistic cost function, and we introduce RankNet, an implementation of these ideas using a neural network to model the underlying ranking function. We present test results on toy data and on data
A Singular Value Thresholding Algorithm for Matrix Completion
, 2008
"... This paper introduces a novel algorithm to approximate the matrix with minimum nuclear norm among all matrices obeying a set of convex constraints. This problem may be understood as the convex relaxation of a rank minimization problem, and arises in many important applications as in the task of reco ..."
Abstract

Cited by 539 (20 self)
 Add to MetaCart
This paper introduces a novel algorithm to approximate the matrix with minimum nuclear norm among all matrices obeying a set of convex constraints. This problem may be understood as the convex relaxation of a rank minimization problem, and arises in many important applications as in the task
The Hungarian method for the assignment problem
 Naval Res. Logist. Quart
, 1955
"... Assuming that numerical scores are available for the performance of each of n persons on each of n jobs, the "assignment problem" is the quest for an assignment of persons to jobs so that the sum of the n scores so obtained is as large as possible. It is shown that ideas latent in the work ..."
Abstract

Cited by 1238 (0 self)
 Add to MetaCart
Assuming that numerical scores are available for the performance of each of n persons on each of n jobs, the "assignment problem" is the quest for an assignment of persons to jobs so that the sum of the n scores so obtained is as large as possible. It is shown that ideas latent
Fast approximate energy minimization via graph cuts
 IEEE Transactions on Pattern Analysis and Machine Intelligence
, 2001
"... In this paper we address the problem of minimizing a large class of energy functions that occur in early vision. The major restriction is that the energy function’s smoothness term must only involve pairs of pixels. We propose two algorithms that use graph cuts to compute a local minimum even when v ..."
Abstract

Cited by 2127 (61 self)
 Add to MetaCart
In this paper we address the problem of minimizing a large class of energy functions that occur in early vision. The major restriction is that the energy function’s smoothness term must only involve pairs of pixels. We propose two algorithms that use graph cuts to compute a local minimum even when
Irrelevant Features and the Subset Selection Problem
 MACHINE LEARNING: PROCEEDINGS OF THE ELEVENTH INTERNATIONAL
, 1994
"... We address the problem of finding a subset of features that allows a supervised induction algorithm to induce small highaccuracy concepts. We examine notions of relevance and irrelevance, and show that the definitions used in the machine learning literature do not adequately partition the features ..."
Abstract

Cited by 741 (26 self)
 Add to MetaCart
We address the problem of finding a subset of features that allows a supervised induction algorithm to induce small highaccuracy concepts. We examine notions of relevance and irrelevance, and show that the definitions used in the machine learning literature do not adequately partition the features
Improved Approximation Algorithms for Maximum Cut and Satisfiability Problems Using Semidefinite Programming
 Journal of the ACM
, 1995
"... We present randomized approximation algorithms for the maximum cut (MAX CUT) and maximum 2satisfiability (MAX 2SAT) problems that always deliver solutions of expected value at least .87856 times the optimal value. These algorithms use a simple and elegant technique that randomly rounds the solution ..."
Abstract

Cited by 1231 (13 self)
 Add to MetaCart
the solution to a nonlinear programming relaxation. This relaxation can be interpreted both as a semidefinite program and as an eigenvalue minimization problem. The best previously known approximation algorithms for these problems had performance guarantees of ...
Results 1  10
of
2,537,541