Results 1  10
of
4,398
Greedy Randomized Adaptive Search Procedures
, 2002
"... GRASP is a multistart metaheuristic for combinatorial problems, in which each iteration consists basically of two phases: construction and local search. The construction phase builds a feasible solution, whose neighborhood is investigated until a local minimum is found during the local search phas ..."
Abstract

Cited by 647 (82 self)
 Add to MetaCart
GRASP is a multistart metaheuristic for combinatorial problems, in which each iteration consists basically of two phases: construction and local search. The construction phase builds a feasible solution, whose neighborhood is investigated until a local minimum is found during the local search
TABU SEARCH
"... Tabu Search is a metaheuristic that guides a local heuristic search procedure to explore the solution space beyond local optimality. One of the main components of tabu search is its use of adaptive memory, which creates a more flexible search behavior. Memory based strategies are therefore the hallm ..."
Abstract

Cited by 822 (48 self)
 Add to MetaCart
Tabu Search is a metaheuristic that guides a local heuristic search procedure to explore the solution space beyond local optimality. One of the main components of tabu search is its use of adaptive memory, which creates a more flexible search behavior. Memory based strategies are therefore
A New Method for Solving Hard Satisfiability Problems
 AAAI
, 1992
"... We introduce a greedy local search procedure called GSAT for solving propositional satisfiability problems. Our experiments show that this procedure can be used to solve hard, randomly generated problems that are an order of magnitude larger than those that can be handled by more traditional approac ..."
Abstract

Cited by 730 (21 self)
 Add to MetaCart
We introduce a greedy local search procedure called GSAT for solving propositional satisfiability problems. Our experiments show that this procedure can be used to solve hard, randomly generated problems that are an order of magnitude larger than those that can be handled by more traditional
Noise strategies for improving local search
 In Proceedings of the Eleventh National Conference on Artificial Intelligence (AAAI94
, 1994
"... It has recently been shown that local search issurprisingly good at nding satisfying assignments for certain computationally hard classes of CNF formulas. The performance of basic local search methods can be further enhanced by introducing mechanisms for escaping from local minima in the search spac ..."
Abstract

Cited by 400 (7 self)
 Add to MetaCart
space. We will compare three such mechanisms: simulated annealing, random noise, and a strategy called \mixed random walk". We show that mixed random walk is the superior strategy. Wealso present results demonstrating the e ectiveness of local search withwalk for solving circuit synthesis
Diagnosing multiple faults.
 Artificial Intelligence,
, 1987
"... Abstract Diagnostic tasks require determining the differences between a model of an artifact and the artifact itself. The differences between the manifested behavior of the artifact and the predicted behavior of the model guide the search for the differences between the artifact and its model. The ..."
Abstract

Cited by 808 (62 self)
 Add to MetaCart
Abstract Diagnostic tasks require determining the differences between a model of an artifact and the artifact itself. The differences between the manifested behavior of the artifact and the predicted behavior of the model guide the search for the differences between the artifact and its model
Ant Colony System: A cooperative learning approach to the traveling salesman problem
 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION
, 1997
"... This paper introduces the ant colony system (ACS), a distributed algorithm that is applied to the traveling salesman problem (TSP). In the ACS, a set of cooperating agents called ants cooperate to find good solutions to TSP’s. Ants cooperate using an indirect form of communication mediated by a pher ..."
Abstract

Cited by 1029 (53 self)
 Add to MetaCart
ACS3opt, a version of the ACS augmented with a local search procedure, to some of the best performing algorithms for symmetric and asymmetric TSP’s.
Where the REALLY Hard Problems Are
 IN J. MYLOPOULOS AND R. REITER (EDS.), PROCEEDINGS OF 12TH INTERNATIONAL JOINT CONFERENCE ON AI (IJCAI91),VOLUME 1
, 1991
"... It is well known that for many NPcomplete problems, such as KSat, etc., typical cases are easy to solve; so that computationally hard cases must be rare (assuming P != NP). This paper shows that NPcomplete problems can be summarized by at least one "order parameter", and that the hard p ..."
Abstract

Cited by 683 (1 self)
 Add to MetaCart
of a solution changes abruptly from near 0 to near 1. It is the high density of wellseparated almost solutions (local minima) at this boundary that cause search algorithms to "thrash". This boundary is a type of phase transition and we show that it is preserved under mappings between
A simple distributed autonomous power control algorithm and its convergence
 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY
, 1993
"... For wireless cellular communication systems, one seeks a simple effective means of power control of signals associated with randomly dispersed users that are reusing a single channel in different cells. By effecting the lowest interference environment, in meeting a required minimum signaltointerf ..."
Abstract

Cited by 477 (3 self)
 Add to MetaCart
For wireless cellular communication systems, one seeks a simple effective means of power control of signals associated with randomly dispersed users that are reusing a single channel in different cells. By effecting the lowest interference environment, in meeting a required minimum signal
Boosting combinatorial search through randomization
, 1998
"... Unpredictability in the running time of complete search procedures can often be explained by the phenomenon of “heavytailed cost distributions”, meaning that at any time during the experiment there is a nonnegligible probability of hitting a problem that requires exponentially more time to solve t ..."
Abstract

Cited by 361 (35 self)
 Add to MetaCart
Unpredictability in the running time of complete search procedures can often be explained by the phenomenon of “heavytailed cost distributions”, meaning that at any time during the experiment there is a nonnegligible probability of hitting a problem that requires exponentially more time to solve
Active Perception
, 1988
"... Active Perception (Active Vision specifically) is defined as a study of Modeling and Control strategies for perception. By modeling we mean models of sensors, processing modules and their interaction. We distinguish local models from global models by their extent of application in space and time. T ..."
Abstract

Cited by 431 (12 self)
 Add to MetaCart
. The local models represent procedures and parameters such as optical distortions of the lens, focal lens, spatial resolution, bandpass filter, etc. The global models on the other hand characterize the overall performance and make predictions on how the individual modules interact. The control strategies
Results 1  10
of
4,398