Results 1 - 10
of
12,974
Reconstruction and Representation of 3D Objects with Radial Basis Functions
- Computer Graphics (SIGGRAPH ’01 Conf. Proc.), pages 67–76. ACM SIGGRAPH
, 2001
"... We use polyharmonic Radial Basis Functions (RBFs) to reconstruct smooth, manifold surfaces from point-cloud data and to repair incomplete meshes. An object's surface is defined implicitly as the zero set of an RBF fitted to the given surface data. Fast methods for fitting and evaluating RBFs al ..."
Abstract
-
Cited by 505 (1 self)
- Add to MetaCart
We use polyharmonic Radial Basis Functions (RBFs) to reconstruct smooth, manifold surfaces from point-cloud data and to repair incomplete meshes. An object's surface is defined implicitly as the zero set of an RBF fitted to the given surface data. Fast methods for fitting and evaluating RBFs
An integrative theory of prefrontal cortex function.
- Annual Review of Neuroscience,
, 2001
"... Abstract The prefrontal cortex has long been suspected to play an important role in cognitive control, in the ability to orchestrate thought and action in accordance with internal goals. Its neural basis, however, has remained a mystery. Here, we propose that cognitive control stems from the active ..."
Abstract
-
Cited by 1093 (20 self)
- Add to MetaCart
Abstract The prefrontal cortex has long been suspected to play an important role in cognitive control, in the ability to orchestrate thought and action in accordance with internal goals. Its neural basis, however, has remained a mystery. Here, we propose that cognitive control stems from
A training algorithm for optimal margin classifiers
- PROCEEDINGS OF THE 5TH ANNUAL ACM WORKSHOP ON COMPUTATIONAL LEARNING THEORY
, 1992
"... A training algorithm that maximizes the margin between the training patterns and the decision boundary is presented. The technique is applicable to a wide variety of classifiaction functions, including Perceptrons, polynomials, and Radial Basis Functions. The effective number of parameters is adjust ..."
Abstract
-
Cited by 1865 (43 self)
- Add to MetaCart
A training algorithm that maximizes the margin between the training patterns and the decision boundary is presented. The technique is applicable to a wide variety of classifiaction functions, including Perceptrons, polynomials, and Radial Basis Functions. The effective number of parameters
Training Support Vector Machines: an Application to Face Detection
, 1997
"... We investigate the application of Support Vector Machines (SVMs) in computer vision. SVM is a learning technique developed by V. Vapnik and his team (AT&T Bell Labs.) that can be seen as a new method for training polynomial, neural network, or Radial Basis Functions classifiers. The decision sur ..."
Abstract
-
Cited by 727 (1 self)
- Add to MetaCart
We investigate the application of Support Vector Machines (SVMs) in computer vision. SVM is a learning technique developed by V. Vapnik and his team (AT&T Bell Labs.) that can be seen as a new method for training polynomial, neural network, or Radial Basis Functions classifiers. The decision
Convolution Kernels on Discrete Structures
, 1999
"... We introduce a new method of constructing kernels on sets whose elements are discrete structures like strings, trees and graphs. The method can be applied iteratively to build a kernel on an infinite set from kernels involving generators of the set. The family of kernels generated generalizes the fa ..."
Abstract
-
Cited by 506 (0 self)
- Add to MetaCart
the family of radial basis kernels. It can also be used to define kernels in the form of joint Gibbs probability distributions. Kernels can be built from hidden Markov random elds, generalized regular expressions, pair-HMMs, or ANOVA decompositions. Uses of the method lead to open problems involving
A tutorial on support vector machines for pattern recognition
- Data Mining and Knowledge Discovery
, 1998
"... The tutorial starts with an overview of the concepts of VC dimension and structural risk minimization. We then describe linear Support Vector Machines (SVMs) for separable and non-separable data, working through a non-trivial example in detail. We describe a mechanical analogy, and discuss when SV ..."
Abstract
-
Cited by 3393 (12 self)
- Add to MetaCart
large (even infinite) VC dimension by computing the VC dimension for homogeneous polynomial and Gaussian radial basis function kernels. While very high VC dimension would normally bode ill for generalization performance, and while at present there exists no theory which shows that good generalization
Matching pursuits with time-frequency dictionaries
- IEEE Transactions on Signal Processing
, 1993
"... Abstract-We introduce an algorithm, called matching pursuit, that decomposes any signal into a linear expansion of waveforms that are selected from a redundant dictionary of functions. These waveforms are chosen in order to best match the signal structures. Matching pursuits are general procedures t ..."
Abstract
-
Cited by 1671 (13 self)
- Add to MetaCart
Abstract-We introduce an algorithm, called matching pursuit, that decomposes any signal into a linear expansion of waveforms that are selected from a redundant dictionary of functions. These waveforms are chosen in order to best match the signal structures. Matching pursuits are general procedures
A theory for multiresolution signal decomposition : the wavelet representation
- IEEE Transaction on Pattern Analysis and Machine Intelligence
, 1989
"... Abstract-Multiresolution representations are very effective for analyzing the information content of images. We study the properties of the operator which approximates a signal at a given resolution. We show that the difference of information between the approximation of a signal at the resolutions ..."
Abstract
-
Cited by 3538 (12 self)
- Add to MetaCart
2 ’ + ’ and 2jcan be extracted by decomposing this signal on a wavelet orthonormal basis of L*(R”). In LL(R), a wavelet orthonormal basis is a family of functions ( @ w (2’ ~-n)),,,“jEZt, which is built by dilating and translating a unique function t+r (xl. This decomposition defines an orthogonal
Verbs and Adverbs: Multidimensional Motion Interpolation Using Radial Basis Functions
- IEEE Computer Graphics and Applications
, 1998
"... This paper describes methods and data structures used to leverage motion sequences of complex linked figures. We present a technique for interpolating between example motions derived from live motion capture or produced through traditional animation tools. These motions can be characterized by emoti ..."
Abstract
-
Cited by 351 (5 self)
- Add to MetaCart
them, allowing an animated figure to exhibit a substantial repertoire of expressive behaviors. A combination of radial basis functions and low order polynomials is used to create the interpolation space between example motions. Inverse kinematic constraints are used to augment the interpolations
Benchmarking Least Squares Support Vector Machine Classifiers
- NEURAL PROCESSING LETTERS
, 2001
"... In Support Vector Machines (SVMs), the solution of the classification problem is characterized by a (convex) quadratic programming (QP) problem. In a modified version of SVMs, called Least Squares SVM classifiers (LS-SVMs), a least squares cost function is proposed so as to obtain a linear set of eq ..."
Abstract
-
Cited by 476 (46 self)
- Add to MetaCart
stage by gradually pruning the support value spectrum and optimizing the hyperparameters during the sparse approximation procedure. In this paper, twenty public domain benchmark datasets are used to evaluate the test set performance of LS-SVM classifiers with linear, polynomial and radial basis function
Results 1 - 10
of
12,974