Results 1  10
of
283,273
Quantum publickey cryptosystems
 in Proc. of CRYPT0 2000
, 2000
"... Abstract. This paper presents a new paradigm of cryptography, quantum publickey cryptosystems. In quantum publickey cryptosystems, all parties including senders, receivers and adversaries are modeled as quantum (probabilistic) polytime Turing (QPT) machines and only classical channels (i.e., no q ..."
Abstract

Cited by 37 (2 self)
 Add to MetaCart
.e., no quantum channels) are employed. A quantum trapdoor oneway function, f, plays an essential role in our system, in which a QPT machine can compute f with high probability, any QPT machine can invert f with negligible probability, and a QPT machine with trapdoor data can invert f. This paper proposes a
Universal OneWay Hash Functions and their Cryptographic Applications
, 1989
"... We define a Universal OneWay Hash Function family, a new primitive which enables the compression of elements in the function domain. The main property of this primitive is that given an element x in the domain, it is computationally hard to find a different domain element which collides with x. We ..."
Abstract

Cited by 357 (15 self)
 Add to MetaCart
schemes were based on the stronger mathematical assumption that trapdoor oneway functions exist. Key words. cryptography, randomized algorithms AMS subject classifications. 68M10, 68Q20, 68Q22, 68R05, 68R10 Part of this work was done while the authors were at the IBM Almaden Research Center. The first
Quantum Gravity
, 2004
"... We describe the basic assumptions and key results of loop quantum gravity, which is a background independent approach to quantum gravity. The emphasis is on the basic physical principles and how one deduces predictions from them, at a level suitable for physicists in other areas such as string theor ..."
Abstract

Cited by 566 (11 self)
 Add to MetaCart
We describe the basic assumptions and key results of loop quantum gravity, which is a background independent approach to quantum gravity. The emphasis is on the basic physical principles and how one deduces predictions from them, at a level suitable for physicists in other areas such as string
Algorithms for Quantum Computation: Discrete Logarithms and Factoring
, 1994
"... A computer is generally considered to be a universal computational device; i.e., it is believed able to simulate any physical computational device with a increase in computation time of at most a polynomial factor. It is not clear whether this is still true when quantum mechanics is taken into consi ..."
Abstract

Cited by 1103 (7 self)
 Add to MetaCart
A computer is generally considered to be a universal computational device; i.e., it is believed able to simulate any physical computational device with a increase in computation time of at most a polynomial factor. It is not clear whether this is still true when quantum mechanics is taken
A Fast Quantum Mechanical Algorithm for Database Search
 ANNUAL ACM SYMPOSIUM ON THEORY OF COMPUTING
, 1996
"... Imagine a phone directory containing N names arranged in completely random order. In order to find someone's phone number with a probability of , any classical algorithm (whether deterministic or probabilistic)
will need to look at a minimum of names. Quantum mechanical systems can be in a supe ..."
Abstract

Cited by 1126 (10 self)
 Add to MetaCart
Imagine a phone directory containing N names arranged in completely random order. In order to find someone's phone number with a probability of , any classical algorithm (whether deterministic or probabilistic)
will need to look at a minimum of names. Quantum mechanical systems can be in a
KodairaSpencer theory of gravity and exact results for quantum string amplitudes
 Commun. Math. Phys
, 1994
"... We develop techniques to compute higher loop string amplitudes for twisted N = 2 theories with ĉ = 3 (i.e. the critical case). An important ingredient is the discovery of an anomaly at every genus in decoupling of BRST trivial states, captured to all orders by a master anomaly equation. In a particu ..."
Abstract

Cited by 545 (60 self)
 Add to MetaCart
We develop techniques to compute higher loop string amplitudes for twisted N = 2 theories with ĉ = 3 (i.e. the critical case). An important ingredient is the discovery of an anomaly at every genus in decoupling of BRST trivial states, captured to all orders by a master anomaly equation. In a particular realization of the N = 2 theories, the resulting string field theory is equivalent to a topological theory in six dimensions, the Kodaira– Spencer theory, which may be viewed as the closed string analog of the Chern–Simon theory. Using the mirror map this leads to computation of the ‘number ’ of holomorphic curves of higher genus curves in Calabi–Yau manifolds. It is shown that topological amplitudes can also be reinterpreted as computing corrections to superpotential terms appearing in the effective 4d theory resulting from compactification of standard 10d superstrings on the corresponding N = 2 theory. Relations with c = 1 strings are also pointed out.
GromovWitten classes, quantum cohomology, and enumerative geometry
 Commun. Math. Phys
, 1994
"... The paper is devoted to the mathematical aspects of topological quantum field theory and its applications to enumerative problems of algebraic geometry. In particular, it contains an axiomatic treatment of Gromov–Witten classes, and a discussion of their properties for Fano varieties. Cohomological ..."
Abstract

Cited by 484 (3 self)
 Add to MetaCart
Field Theories are defined, and it is proved that tree level theories are determined by their correlation functions. Application to counting rational curves on del Pezzo surfaces and projective spaces are given. Let V be a projective algebraic manifold. Methods of quantum field theory recently led to a
A oneway quantum computer
 Phys. Rev. Lett
"... We describe a faulttolerant oneway quantum computer on cluster states in three dimensions. The presented scheme uses methods of topological error correction resulting from a link between cluster states and surface codes. The error threshold is 1.4 % for local depolarizing error and 0.11 % for each ..."
Abstract

Cited by 184 (1 self)
 Add to MetaCart
We describe a faulttolerant oneway quantum computer on cluster states in three dimensions. The presented scheme uses methods of topological error correction resulting from a link between cluster states and surface codes. The error threshold is 1.4 % for local depolarizing error and 0
Physical OneWay Functions
 MIT
, 2001
"... Modern cryptography relies on algorithmic oneway functions numerical functions which are easy to compute but very difficult to invert. This dissertation introduces physical oneway functions and physical oneway hash functions as primitives for physical analogs of cryptosystems. Physical oneway f ..."
Abstract

Cited by 26 (0 self)
 Add to MetaCart
Modern cryptography relies on algorithmic oneway functions numerical functions which are easy to compute but very difficult to invert. This dissertation introduces physical oneway functions and physical oneway hash functions as primitives for physical analogs of cryptosystems. Physical oneway
A New Kind of Science
, 2002
"... “Somebody says, ‘You know, you people always say that space is continuous. How do you know when you get to a small enough dimension that there really are enough points in between, that it isn’t just a lot of dots separated by little distances? ’ Or they say, ‘You know those quantum mechanical amplit ..."
Abstract

Cited by 850 (0 self)
 Add to MetaCart
“Somebody says, ‘You know, you people always say that space is continuous. How do you know when you get to a small enough dimension that there really are enough points in between, that it isn’t just a lot of dots separated by little distances? ’ Or they say, ‘You know those quantum mechanical
Results 1  10
of
283,273