Results 1  10
of
287,461
Quantum Gravity
, 2004
"... We describe the basic assumptions and key results of loop quantum gravity, which is a background independent approach to quantum gravity. The emphasis is on the basic physical principles and how one deduces predictions from them, at a level suitable for physicists in other areas such as string theor ..."
Abstract

Cited by 566 (11 self)
 Add to MetaCart
We describe the basic assumptions and key results of loop quantum gravity, which is a background independent approach to quantum gravity. The emphasis is on the basic physical principles and how one deduces predictions from them, at a level suitable for physicists in other areas such as string
Algorithms for Quantum Computation: Discrete Logarithms and Factoring
, 1994
"... A computer is generally considered to be a universal computational device; i.e., it is believed able to simulate any physical computational device with a increase in computation time of at most a polynomial factor. It is not clear whether this is still true when quantum mechanics is taken into consi ..."
Abstract

Cited by 1103 (7 self)
 Add to MetaCart
A computer is generally considered to be a universal computational device; i.e., it is believed able to simulate any physical computational device with a increase in computation time of at most a polynomial factor. It is not clear whether this is still true when quantum mechanics is taken
A Fast Quantum Mechanical Algorithm for Database Search
 ANNUAL ACM SYMPOSIUM ON THEORY OF COMPUTING
, 1996
"... Imagine a phone directory containing N names arranged in completely random order. In order to find someone's phone number with a probability of , any classical algorithm (whether deterministic or probabilistic)
will need to look at a minimum of names. Quantum mechanical systems can be in a supe ..."
Abstract

Cited by 1126 (10 self)
 Add to MetaCart
Imagine a phone directory containing N names arranged in completely random order. In order to find someone's phone number with a probability of , any classical algorithm (whether deterministic or probabilistic)
will need to look at a minimum of names. Quantum mechanical systems can be in a
KodairaSpencer theory of gravity and exact results for quantum string amplitudes
 Commun. Math. Phys
, 1994
"... We develop techniques to compute higher loop string amplitudes for twisted N = 2 theories with ĉ = 3 (i.e. the critical case). An important ingredient is the discovery of an anomaly at every genus in decoupling of BRST trivial states, captured to all orders by a master anomaly equation. In a particu ..."
Abstract

Cited by 545 (60 self)
 Add to MetaCart
We develop techniques to compute higher loop string amplitudes for twisted N = 2 theories with ĉ = 3 (i.e. the critical case). An important ingredient is the discovery of an anomaly at every genus in decoupling of BRST trivial states, captured to all orders by a master anomaly equation. In a
GromovWitten classes, quantum cohomology, and enumerative geometry
 Commun. Math. Phys
, 1994
"... The paper is devoted to the mathematical aspects of topological quantum field theory and its applications to enumerative problems of algebraic geometry. In particular, it contains an axiomatic treatment of Gromov–Witten classes, and a discussion of their properties for Fano varieties. Cohomological ..."
Abstract

Cited by 484 (3 self)
 Add to MetaCart
The paper is devoted to the mathematical aspects of topological quantum field theory and its applications to enumerative problems of algebraic geometry. In particular, it contains an axiomatic treatment of Gromov–Witten classes, and a discussion of their properties for Fano varieties. Cohomological
Simulating Physics with Computers
 SIAM Journal on Computing
, 1982
"... A digital computer is generally believed to be an efficient universal computing device; that is, it is believed able to simulate any physical computing device with an increase in computation time of at most a polynomial factor. This may not be true when quantum mechanics is taken into consideration. ..."
Abstract

Cited by 601 (1 self)
 Add to MetaCart
A digital computer is generally believed to be an efficient universal computing device; that is, it is believed able to simulate any physical computing device with an increase in computation time of at most a polynomial factor. This may not be true when quantum mechanics is taken into consideration
Antide Sitter Space, Thermal Phase Transition, and Confinement in Gauge Theories
 Adv. Theor. Math. Phys
, 1998
"... The correspondence between supergravity (and string theory) on AdS space and boundary conformal field theory relates the thermodynamics of N = 4 super YangMills theory in four dimensions to the thermodynamics of Schwarzschild black holes in Antide Sitter space. In this description, quantum phenome ..."
Abstract

Cited by 1087 (4 self)
 Add to MetaCart
The correspondence between supergravity (and string theory) on AdS space and boundary conformal field theory relates the thermodynamics of N = 4 super YangMills theory in four dimensions to the thermodynamics of Schwarzschild black holes in Antide Sitter space. In this description, quantum
A New Kind of Science
, 2002
"... “Somebody says, ‘You know, you people always say that space is continuous. How do you know when you get to a small enough dimension that there really are enough points in between, that it isn’t just a lot of dots separated by little distances? ’ Or they say, ‘You know those quantum mechanical amplit ..."
Abstract

Cited by 850 (0 self)
 Add to MetaCart
“Somebody says, ‘You know, you people always say that space is continuous. How do you know when you get to a small enough dimension that there really are enough points in between, that it isn’t just a lot of dots separated by little distances? ’ Or they say, ‘You know those quantum mechanical
SeibergWitten prepotential from instanton counting
, 2002
"... In my lecture I consider integrals over moduli spaces of supersymmetric gauge field configurations (instantons, Higgs bundles, torsion free sheaves). The applications are twofold: physical and mathematical; they involve supersymmetric quantum mechanics of Dparticles in various dimensions, direct co ..."
Abstract

Cited by 496 (9 self)
 Add to MetaCart
In my lecture I consider integrals over moduli spaces of supersymmetric gauge field configurations (instantons, Higgs bundles, torsion free sheaves). The applications are twofold: physical and mathematical; they involve supersymmetric quantum mechanics of Dparticles in various dimensions, direct
Results 1  10
of
287,461