Results 1  10
of
635,194
The Nature of Statistical Learning Theory
, 1999
"... Statistical learning theory was introduced in the late 1960’s. Until the 1990’s it was a purely theoretical analysis of the problem of function estimation from a given collection of data. In the middle of the 1990’s new types of learning algorithms (called support vector machines) based on the deve ..."
Abstract

Cited by 12992 (32 self)
 Add to MetaCart
Statistical learning theory was introduced in the late 1960’s. Until the 1990’s it was a purely theoretical analysis of the problem of function estimation from a given collection of data. In the middle of the 1990’s new types of learning algorithms (called support vector machines) based
Probabilistic Visual Learning for Object Representation
, 1996
"... We present an unsupervised technique for visual learning which is based on density estimation in highdimensional spaces using an eigenspace decomposition. Two types of density estimates are derived for modeling the training data: a multivariate Gaussian (for unimodal distributions) and a Mixtureof ..."
Abstract

Cited by 698 (15 self)
 Add to MetaCart
ofGaussians model (for multimodal distributions). These probability densities are then used to formulate a maximumlikelihood estimation framework for visual search and target detection for automatic object recognition and coding. Our learning technique is applied to the probabilistic visual modeling, detection
Object class recognition by unsupervised scaleinvariant learning
 In CVPR
, 2003
"... We present a method to learn and recognize object class models from unlabeled and unsegmented cluttered scenes in a scale invariant manner. Objects are modeled as flexible constellations of parts. A probabilistic representation is used for all aspects of the object: shape, appearance, occlusion and ..."
Abstract

Cited by 1117 (49 self)
 Add to MetaCart
and relative scale. An entropybased feature detector is used to select regions and their scale within the image. In learning the parameters of the scaleinvariant object model are estimated. This is done using expectationmaximization in a maximumlikelihood setting. In recognition, this model is used in a
Learning generative visual models from few training examples: an incremental Bayesian approach tested on 101 object categories
, 2004
"... Abstract — Current computational approaches to learning visual object categories require thousands of training images, are slow, cannot learn in an incremental manner and cannot incorporate prior information into the learning process. In addition, no algorithm presented in the literature has been te ..."
Abstract

Cited by 767 (16 self)
 Add to MetaCart
are learnt incrementally in a Bayesian manner. Our incremental algorithm is compared experimentally to an earlier batch Bayesian algorithm, as well as to one based on maximumlikelihood. The incremental and batch versions have comparable classification performance on small training sets, but incremental
A Direct Adaptive Method for Faster Backpropagation Learning: The RPROP Algorithm
 IEEE INTERNATIONAL CONFERENCE ON NEURAL NETWORKS
, 1993
"... A new learning algorithm for multilayer feedforward networks, RPROP, is proposed. To overcome the inherent disadvantages of pure gradientdescent, RPROP performs a local adaptation of the weightupdates according to the behaviour of the errorfunction. In substantial difference to other adaptive tech ..."
Abstract

Cited by 924 (34 self)
 Add to MetaCart
A new learning algorithm for multilayer feedforward networks, RPROP, is proposed. To overcome the inherent disadvantages of pure gradientdescent, RPROP performs a local adaptation of the weightupdates according to the behaviour of the errorfunction. In substantial difference to other adaptive
Manifold regularization: A geometric framework for learning from labeled and unlabeled examples
 JOURNAL OF MACHINE LEARNING RESEARCH
, 2006
"... We propose a family of learning algorithms based on a new form of regularization that allows us to exploit the geometry of the marginal distribution. We focus on a semisupervised framework that incorporates labeled and unlabeled data in a generalpurpose learner. Some transductive graph learning al ..."
Abstract

Cited by 565 (16 self)
 Add to MetaCart
We propose a family of learning algorithms based on a new form of regularization that allows us to exploit the geometry of the marginal distribution. We focus on a semisupervised framework that incorporates labeled and unlabeled data in a generalpurpose learner. Some transductive graph learning
Hierarchical mixtures of experts and the EM algorithm
, 1993
"... We present a treestructured architecture for supervised learning. The statistical model underlying the architecture is a hierarchical mixture model in which both the mixture coefficients and the mixture components are generalized linear models (GLIM’s). Learning is treated as a maximum likelihood ..."
Abstract

Cited by 874 (21 self)
 Add to MetaCart
We present a treestructured architecture for supervised learning. The statistical model underlying the architecture is a hierarchical mixture model in which both the mixture coefficients and the mixture components are generalized linear models (GLIM’s). Learning is treated as a maximum likelihood
Probabilistic Latent Semantic Analysis
 In Proc. of Uncertainty in Artificial Intelligence, UAI’99
, 1999
"... Probabilistic Latent Semantic Analysis is a novel statistical technique for the analysis of twomode and cooccurrence data, which has applications in information retrieval and filtering, natural language processing, machine learning from text, and in related areas. Compared to standard Latent Sema ..."
Abstract

Cited by 760 (9 self)
 Add to MetaCart
to avoid overfitting, we propose a widely applicable generalization of maximum likelihood model fitting by tempered EM. Our approach yields substantial and consistent improvements over Latent Semantic Analysis in a number of experiments.
The Symbol Grounding Problem
, 1990
"... There has been much discussion recently about the scope and limits of purely symbolic models of the mind and about the proper role of connectionism in cognitive modeling. This paper describes the "symbol grounding problem": How can the semantic interpretation of a formal symbol system be m ..."
Abstract

Cited by 1074 (19 self)
 Add to MetaCart
There has been much discussion recently about the scope and limits of purely symbolic models of the mind and about the proper role of connectionism in cognitive modeling. This paper describes the "symbol grounding problem": How can the semantic interpretation of a formal symbol system
Variational algorithms for approximate Bayesian inference
, 2003
"... The Bayesian framework for machine learning allows for the incorporation of prior knowledge in a coherent way, avoids overfitting problems, and provides a principled basis for selecting between alternative models. Unfortunately the computations required are usually intractable. This thesis presents ..."
Abstract

Cited by 433 (8 self)
 Add to MetaCart
the theoretical core of the thesis, generalising the expectationmaximisation (EM) algorithm for learning maximum likelihood parameters to the VB EM algorithm which integrates over model parameters. The algorithm is then specialised to the large family of conjugateexponential (CE) graphical models, and several
Results 1  10
of
635,194