Results 11 - 20
of
226,932
A Direct Adaptive Method for Faster Backpropagation Learning: The RPROP Algorithm
- IEEE INTERNATIONAL CONFERENCE ON NEURAL NETWORKS
, 1993
"... A new learning algorithm for multilayer feedforward networks, RPROP, is proposed. To overcome the inherent disadvantages of pure gradient-descent, RPROP performs a local adaptation of the weight-updates according to the behaviour of the errorfunction. In substantial difference to other adaptive tech ..."
Abstract
-
Cited by 938 (34 self)
- Add to MetaCart
A new learning algorithm for multilayer feedforward networks, RPROP, is proposed. To overcome the inherent disadvantages of pure gradient-descent, RPROP performs a local adaptation of the weight-updates according to the behaviour of the errorfunction. In substantial difference to other adaptive
Recognizing human actions: A local SVM approach
- In ICPR
, 2004
"... Local space-time features capture local events in video and can be adapted to the size, the frequency and the velocity of moving patterns. In this paper we demonstrate how such features can be used for recognizing complex motion patterns. We construct video representations in terms of local space-ti ..."
Abstract
-
Cited by 758 (20 self)
- Add to MetaCart
the proposed method and demonstrate its advantage compared to other relative approaches for action recognition. 1.
Face description with local binary patterns: Application to face recognition
- IEEE Trans. Pattern Analysis and Machine Intelligence
, 2006
"... Abstract—This paper presents a novel and efficient facial image representation based on local binary pattern (LBP) texture features. The face image is divided into several regions from which the LBP feature distributions are extracted and concatenated into an enhanced feature vector to be used as a ..."
Abstract
-
Cited by 526 (27 self)
- Add to MetaCart
face descriptor. The performance of the proposed method is assessed in the face recognition problem under different challenges. Other applications and several extensions are also discussed. Index Terms—Facial image representation, local binary pattern, component-based face recognition, texture features
BIRCH: an efficient data clustering method for very large databases
- In Proc. of the ACM SIGMOD Intl. Conference on Management of Data (SIGMOD
, 1996
"... Finding useful patterns in large datasets has attracted considerable interest recently, and one of the most widely st,udied problems in this area is the identification of clusters, or deusel y populated regions, in a multi-dir nensional clataset. Prior work does not adequately address the problem of ..."
Abstract
-
Cited by 576 (2 self)
- Add to MetaCart
performance comparisons of BIR (;’H versus CLARA NS, a clustering method proposed recently for large datasets, and S11OW that BIRCH is consistently 1
A review of image denoising algorithms, with a new one
- SIMUL
, 2005
"... The search for efficient image denoising methods is still a valid challenge at the crossing of functional analysis and statistics. In spite of the sophistication of the recently proposed methods, most algorithms have not yet attained a desirable level of applicability. All show an outstanding perf ..."
Abstract
-
Cited by 508 (6 self)
- Add to MetaCart
The search for efficient image denoising methods is still a valid challenge at the crossing of functional analysis and statistics. In spite of the sophistication of the recently proposed methods, most algorithms have not yet attained a desirable level of applicability. All show an outstanding
M-tree: An Efficient Access Method for Similarity Search in Metric Spaces
, 1997
"... A new access meth d, called M-tree, is proposed to organize and search large data sets from a generic "metric space", i.e. whE4 object proximity is only defined by a distance function satisfyingth positivity, symmetry, and triangle inequality postulates. We detail algorith[ for insertion o ..."
Abstract
-
Cited by 663 (38 self)
- Add to MetaCart
A new access meth d, called M-tree, is proposed to organize and search large data sets from a generic "metric space", i.e. whE4 object proximity is only defined by a distance function satisfyingth positivity, symmetry, and triangle inequality postulates. We detail algorith[ for insertion
A comparison of bayesian methods for haplotype reconstruction from population genotype data.
- Am J Hum Genet
, 2003
"... In this report, we compare and contrast three previously published Bayesian methods for inferring haplotypes from genotype data in a population sample. We review the methods, emphasizing the differences between them in terms of both the models ("priors") they use and the computational str ..."
Abstract
-
Cited by 557 (7 self)
- Add to MetaCart
In this report, we compare and contrast three previously published Bayesian methods for inferring haplotypes from genotype data in a population sample. We review the methods, emphasizing the differences between them in terms of both the models ("priors") they use and the computational
Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories
- In CVPR
"... This paper presents a method for recognizing scene categories based on approximate global geometric correspondence. This technique works by partitioning the image into increasingly fine sub-regions and computing histograms of local features found inside each sub-region. The resulting “spatial pyrami ..."
Abstract
-
Cited by 1923 (47 self)
- Add to MetaCart
pyramid ” is a simple and computationally efficient extension of an orderless bag-of-features image representation, and it shows significantly improved performance on challenging scene categorization tasks. Specifically, our proposed method exceeds the state of the art on the Caltech-101 database
Linear models and empirical bayes methods for assessing differential expression in microarray experiments.
- Stat. Appl. Genet. Mol. Biol.
, 2004
"... Abstract The problem of identifying differentially expressed genes in designed microarray experiments is considered. Lonnstedt and Speed (2002) derived an expression for the posterior odds of differential expression in a replicated two-color experiment using a simple hierarchical parametric model. ..."
Abstract
-
Cited by 1321 (24 self)
- Add to MetaCart
of interest. The approach applies equally well to both single channel and two color microarray experiments. Consistent, closed form estimators are derived for the hyperparameters in the model. The estimators proposed have robust behavior even for small numbers of arrays and allow for incomplete data arising
Probabilistic Latent Semantic Analysis
- In Proc. of Uncertainty in Artificial Intelligence, UAI’99
, 1999
"... Probabilistic Latent Semantic Analysis is a novel statistical technique for the analysis of two--mode and co-occurrence data, which has applications in information retrieval and filtering, natural language processing, machine learning from text, and in related areas. Compared to standard Latent Sema ..."
Abstract
-
Cited by 771 (9 self)
- Add to MetaCart
Semantic Analysis which stems from linear algebra and performs a Singular Value Decomposition of co-occurrence tables, the proposed method is based on a mixture decomposition derived from a latent class model. This results in a more principled approach which has a solid foundation in statistics. In order
Results 11 - 20
of
226,932