• Documents
  • Authors
  • Tables
  • Log in
  • Sign up
  • MetaCart
  • DMCA
  • Donate

CiteSeerX logo

Advanced Search Include Citations

Tools

Sorted by:
Try your query at:
Semantic Scholar Scholar Academic
Google Bing DBLP
Results 1 - 10 of 9,243
Next 10 →

Probabilistic Simulations for Probabilistic Processes

by Roberto Segala, Nancy Lynch , 1994
"... Several probabilistic simulation relations for probabilistic systems are defined and evaluated according to two criteria: compositionality and preservation of "interesting" properties. Here, the interesting properties of a system are identified with those that are expressible in an untimed ..."
Abstract - Cited by 361 (19 self) - Add to MetaCart
Several probabilistic simulation relations for probabilistic systems are defined and evaluated according to two criteria: compositionality and preservation of "interesting" properties. Here, the interesting properties of a system are identified with those that are expressible

Bisimulation through probabilistic testing

by Kim G. Larsen, Arne Skou - in “Conference Record of the 16th ACM Symposium on Principles of Programming Languages (POPL , 1989
"... We propose a language for testing concurrent processes and examine its strength in terms of the processes that are distinguished by a test. By using probabilistic transition systems as the underlying semantic model, we show how a testing algorithm can distinguish, with a probability arbitrarily clos ..."
Abstract - Cited by 529 (14 self) - Add to MetaCart
We propose a language for testing concurrent processes and examine its strength in terms of the processes that are distinguished by a test. By using probabilistic transition systems as the underlying semantic model, we show how a testing algorithm can distinguish, with a probability arbitrarily

Probabilistic Principal Component Analysis

by Michael E. Tipping, Chris M. Bishop - JOURNAL OF THE ROYAL STATISTICAL SOCIETY, SERIES B , 1999
"... Principal component analysis (PCA) is a ubiquitous technique for data analysis and processing, but one which is not based upon a probability model. In this paper we demonstrate how the principal axes of a set of observed data vectors may be determined through maximum-likelihood estimation of paramet ..."
Abstract - Cited by 709 (5 self) - Add to MetaCart
Principal component analysis (PCA) is a ubiquitous technique for data analysis and processing, but one which is not based upon a probability model. In this paper we demonstrate how the principal axes of a set of observed data vectors may be determined through maximum-likelihood estimation

Probabilistic Latent Semantic Analysis

by Thomas Hofmann - In Proc. of Uncertainty in Artificial Intelligence, UAI’99 , 1999
"... Probabilistic Latent Semantic Analysis is a novel statistical technique for the analysis of two--mode and co-occurrence data, which has applications in information retrieval and filtering, natural language processing, machine learning from text, and in related areas. Compared to standard Latent Sema ..."
Abstract - Cited by 771 (9 self) - Add to MetaCart
Probabilistic Latent Semantic Analysis is a novel statistical technique for the analysis of two--mode and co-occurrence data, which has applications in information retrieval and filtering, natural language processing, machine learning from text, and in related areas. Compared to standard Latent

Acceptance Trees for Probabilistic Processes

by Manuel Nunez, David de Frutos, Luis Llana - In CONCUR'95, LNCS 962 , 1995
"... . In this paper we study the extension of classical testing theory to a probabilistic process algebra. We consider a generative interpretation of probabilities for a language with two choice operators (one internal and the other external), which are annotated with a probability p 2 (0; 1). We defin ..."
Abstract - Cited by 21 (9 self) - Add to MetaCart
. In this paper we study the extension of classical testing theory to a probabilistic process algebra. We consider a generative interpretation of probabilities for a language with two choice operators (one internal and the other external), which are annotated with a probability p 2 (0; 1). We

Testing Reactive Probabilistic Processes

by Sonja Georgievska, Suzana Andova
"... We define a testing equivalence in the spirit of De Nicola and Hennessy for reactive probabilistic processes, i.e. for processes where the internal nondeterminism is due to random behaviour. We characterize the testing equivalence in terms of ready-traces. From the characterization it follows that t ..."
Abstract - Cited by 1 (0 self) - Add to MetaCart
We define a testing equivalence in the spirit of De Nicola and Hennessy for reactive probabilistic processes, i.e. for processes where the internal nondeterminism is due to random behaviour. We characterize the testing equivalence in terms of ready-traces. From the characterization it follows

Mixtures of Probabilistic Principal Component Analysers

by Michael E. Tipping, Christopher M. Bishop , 1998
"... Principal component analysis (PCA) is one of the most popular techniques for processing, compressing and visualising data, although its effectiveness is limited by its global linearity. While nonlinear variants of PCA have been proposed, an alternative paradigm is to capture data complexity by a com ..."
Abstract - Cited by 532 (6 self) - Add to MetaCart
Principal component analysis (PCA) is one of the most popular techniques for processing, compressing and visualising data, although its effectiveness is limited by its global linearity. While nonlinear variants of PCA have been proposed, an alternative paradigm is to capture data complexity by a

Reactive, Generative and Stratified Models of Probabilistic Processes

by Rob J. Van Glabbeek, Scott A. Smolka, Bernhard Steffen - Information and Computation , 1990
"... ion Let E; E 0 be PCCS expressions. The inter-model abstraction rule IMARGR is defined by E ff[p] \Gamma\Gamma! i E 0 =) E ff[p= G (E;fffg)] ae \Gamma\Gamma\Gamma\Gamma\Gamma\Gamma! i E 0 This rule uses the generative normalization function to convert generative probabilities to reactive ..."
Abstract - Cited by 195 (8 self) - Add to MetaCart
ion Let E; E 0 be PCCS expressions. The inter-model abstraction rule IMARGR is defined by E ff[p] \Gamma\Gamma! i E 0 =) E ff[p= G (E;fffg)] ae \Gamma\Gamma\Gamma\Gamma\Gamma\Gamma! i E 0 This rule uses the generative normalization function to convert generative probabilities to reactive ones, thereby abstracting away from the relative probabilities between different actions. We can now define 'GR ('G (P )) as the reactive transition system that can be inferred from P 's generative transition system via IMARGR . By the same procedure as described at the end of Section 3.1, 'GR can be extended to a mapping 'GR : j GG ! j GR . Write P GR ¸ Q if P; Q 2 Pr are reactive bisimulation equivalent with respect to the transitions derivable from G+IMARGR , i.e. the theory obtained by adding IMARGR to the rules of Figure 7. The equivalence GR ¸ is defined just like R ¸ but using the cPDF ¯GR instead of ¯R . ¯GR is defined by ¯GR (P; ff; S) = X i2I R (=I G ) fj p i j G+ I...

Unsupervised Learning by Probabilistic Latent Semantic Analysis

by Thomas Hofmann - Machine Learning , 2001
"... Abstract. This paper presents a novel statistical method for factor analysis of binary and count data which is closely related to a technique known as Latent Semantic Analysis. In contrast to the latter method which stems from linear algebra and performs a Singular Value Decomposition of co-occurren ..."
Abstract - Cited by 618 (4 self) - Add to MetaCart
Maximization algorithm for model fitting, which has shown excellent performance in practice. Probabilistic Latent Semantic Analysis has many applications, most prominently in information retrieval, natural language processing, machine learning from text, and in related areas. The paper presents perplexity

Symbolic model checking for probabilistic processes

by Christel Baier, Edmund M. Clarke, Vasiliki Hartonas-garmhausen, Marta Kwiatkowska, Mark Ryan - IN PROCEEDINGS OF ICALP '97 , 1997
"... We introduce a symbolic model checking procedure for Probabilistic Computation Tree Logic PCTL over labelled Markov chains as models. Model checking for probabilistic logics typically involves solving linear equation systems in order to ascertain the probability of a given formula holding in a stat ..."
Abstract - Cited by 97 (29 self) - Add to MetaCart
We introduce a symbolic model checking procedure for Probabilistic Computation Tree Logic PCTL over labelled Markov chains as models. Model checking for probabilistic logics typically involves solving linear equation systems in order to ascertain the probability of a given formula holding in a
Next 10 →
Results 1 - 10 of 9,243
Powered by: Apache Solr
  • About CiteSeerX
  • Submit and Index Documents
  • Privacy Policy
  • Help
  • Data
  • Source
  • Contact Us

Developed at and hosted by The College of Information Sciences and Technology

© 2007-2019 The Pennsylvania State University