Results 1  10
of
17,528
Stochastic Analysis via a Probabilistic Process Algebra
"... We propose a probabilistic process algebra built on top of a fully parallel calculus. Being strongly inspired by LOTOS, our model allows for multiparty synchronization in process parallel composition. Anyway, departing from LOTOS, it has a noninterleaving, multiset, semantics: Independent actions ..."
Abstract
 Add to MetaCart
We propose a probabilistic process algebra built on top of a fully parallel calculus. Being strongly inspired by LOTOS, our model allows for multiparty synchronization in process parallel composition. Anyway, departing from LOTOS, it has a noninterleaving, multiset, semantics: Independent actions
Modeling Systems by Probabilistic Process Algebra: An Event Structures Approach
, 1993
"... This paper treats a probabilistic version of (a subset of) the process algebra LOTOS. It incorporates a probabilistic choice assigning a probability of occurrence to each of its alternatives. Opposed to the traditional interleaving semantics used for existing probabilistic process algebras the prese ..."
Abstract

Cited by 15 (6 self)
 Add to MetaCart
This paper treats a probabilistic version of (a subset of) the process algebra LOTOS. It incorporates a probabilistic choice assigning a probability of occurrence to each of its alternatives. Opposed to the traditional interleaving semantics used for existing probabilistic process algebras
Probabilistic Latent Semantic Analysis
 In Proc. of Uncertainty in Artificial Intelligence, UAI’99
, 1999
"... Probabilistic Latent Semantic Analysis is a novel statistical technique for the analysis of twomode and cooccurrence data, which has applications in information retrieval and filtering, natural language processing, machine learning from text, and in related areas. Compared to standard Latent Sema ..."
Abstract

Cited by 771 (9 self)
 Add to MetaCart
Probabilistic Latent Semantic Analysis is a novel statistical technique for the analysis of twomode and cooccurrence data, which has applications in information retrieval and filtering, natural language processing, machine learning from text, and in related areas. Compared to standard Latent
Unsupervised Learning by Probabilistic Latent Semantic Analysis
 Machine Learning
, 2001
"... Abstract. This paper presents a novel statistical method for factor analysis of binary and count data which is closely related to a technique known as Latent Semantic Analysis. In contrast to the latter method which stems from linear algebra and performs a Singular Value Decomposition of cooccurren ..."
Abstract

Cited by 618 (4 self)
 Add to MetaCart
Maximization algorithm for model fitting, which has shown excellent performance in practice. Probabilistic Latent Semantic Analysis has many applications, most prominently in information retrieval, natural language processing, machine learning from text, and in related areas. The paper presents perplexity
Bisimulation through probabilistic testing
 in “Conference Record of the 16th ACM Symposium on Principles of Programming Languages (POPL
, 1989
"... We propose a language for testing concurrent processes and examine its strength in terms of the processes that are distinguished by a test. By using probabilistic transition systems as the underlying semantic model, we show how a testing algorithm can distinguish, with a probability arbitrarily clos ..."
Abstract

Cited by 529 (14 self)
 Add to MetaCart
We propose a language for testing concurrent processes and examine its strength in terms of the processes that are distinguished by a test. By using probabilistic transition systems as the underlying semantic model, we show how a testing algorithm can distinguish, with a probability arbitrarily
Probabilistic Principal Component Analysis
 JOURNAL OF THE ROYAL STATISTICAL SOCIETY, SERIES B
, 1999
"... Principal component analysis (PCA) is a ubiquitous technique for data analysis and processing, but one which is not based upon a probability model. In this paper we demonstrate how the principal axes of a set of observed data vectors may be determined through maximumlikelihood estimation of paramet ..."
Abstract

Cited by 709 (5 self)
 Add to MetaCart
Principal component analysis (PCA) is a ubiquitous technique for data analysis and processing, but one which is not based upon a probability model. In this paper we demonstrate how the principal axes of a set of observed data vectors may be determined through maximumlikelihood estimation
Mixtures of Probabilistic Principal Component Analysers
, 1998
"... Principal component analysis (PCA) is one of the most popular techniques for processing, compressing and visualising data, although its effectiveness is limited by its global linearity. While nonlinear variants of PCA have been proposed, an alternative paradigm is to capture data complexity by a com ..."
Abstract

Cited by 532 (6 self)
 Add to MetaCart
Principal component analysis (PCA) is one of the most popular techniques for processing, compressing and visualising data, although its effectiveness is limited by its global linearity. While nonlinear variants of PCA have been proposed, an alternative paradigm is to capture data complexity by a
Parallel Numerical Linear Algebra
, 1993
"... We survey general techniques and open problems in numerical linear algebra on parallel architectures. We first discuss basic principles of parallel processing, describing the costs of basic operations on parallel machines, including general principles for constructing efficient algorithms. We illust ..."
Abstract

Cited by 773 (23 self)
 Add to MetaCart
We survey general techniques and open problems in numerical linear algebra on parallel architectures. We first discuss basic principles of parallel processing, describing the costs of basic operations on parallel machines, including general principles for constructing efficient algorithms. We
Probabilistic Outputs for Support Vector Machines and Comparisons to Regularized Likelihood Methods
 ADVANCES IN LARGE MARGIN CLASSIFIERS
, 1999
"... The output of a classifier should be a calibrated posterior probability to enable postprocessing. Standard SVMs do not provide such probabilities. One method to create probabilities is to directly train a kernel classifier with a logit link function and a regularized maximum likelihood score. Howev ..."
Abstract

Cited by 1051 (0 self)
 Add to MetaCart
The output of a classifier should be a calibrated posterior probability to enable postprocessing. Standard SVMs do not provide such probabilities. One method to create probabilities is to directly train a kernel classifier with a logit link function and a regularized maximum likelihood score
Results 1  10
of
17,528