Results 1  10
of
39,088
Maximum entropy markov models for information extraction and segmentation
, 2000
"... Hidden Markov models (HMMs) are a powerful probabilistic tool for modeling sequential data, and have been applied with success to many textrelated tasks, such as partofspeech tagging, text segmentation and information extraction. In these cases, the observations are usually modeled as multinomial ..."
Abstract

Cited by 561 (18 self)
 Add to MetaCart
, capitalization, formatting, partofspeech), and defines the conditional probability of state sequences given observation sequences. It does this by using the maximum entropy framework to fit a set of exponential models that represent the probability of a state given an observation and the previous state. We
Computing semantic relatedness using Wikipediabased explicit semantic analysis
 In Proceedings of the 20th International Joint Conference on Artificial Intelligence
, 2007
"... Computing semantic relatedness of natural language texts requires access to vast amounts of commonsense and domainspecific world knowledge. We propose Explicit Semantic Analysis (ESA), a novel method that represents the meaning of texts in a highdimensional space of concepts derived from Wikipedi ..."
Abstract

Cited by 562 (9 self)
 Add to MetaCart
with the previous state of the art, using ESA results in substantial improvements in correlation of computed relatedness scores with human judgments: from r =0.56 to 0.75 for individual words and from r =0.60 to 0.72 for texts. Importantly, due to the use of natural concepts, the ESA model is easy to explain
Imagenet classification with deep convolutional neural networks.
 In Advances in the Neural Information Processing System,
, 2012
"... Abstract We trained a large, deep convolutional neural network to classify the 1.2 million highresolution images in the ImageNet LSVRC2010 contest into the 1000 different classes. On the test data, we achieved top1 and top5 error rates of 37.5% and 17.0% which is considerably better than the pr ..."
Abstract

Cited by 1010 (11 self)
 Add to MetaCart
the previous stateoftheart. The neural network, which has 60 million parameters and 650,000 neurons, consists of five convolutional layers, some of which are followed by maxpooling layers, and three fullyconnected layers with a final 1000way softmax. To make training faster, we used non
The Theory of Hybrid Automata
, 1996
"... A hybrid automaton is a formal model for a mixed discretecontinuous system. We classify hybrid automata acoording to what questions about their behavior can be answered algorithmically. The classification reveals structure on mixed discretecontinuous state spaces that was previously studied on pur ..."
Abstract

Cited by 685 (12 self)
 Add to MetaCart
A hybrid automaton is a formal model for a mixed discretecontinuous system. We classify hybrid automata acoording to what questions about their behavior can be answered algorithmically. The classification reveals structure on mixed discretecontinuous state spaces that was previously studied
Accurate Unlexicalized Parsing
 IN PROCEEDINGS OF THE 41ST ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS
, 2003
"... We demonstrate that an unlexicalized PCFG can parse much more accurately than previously shown, by making use of simple, linguistically motivated state splits, which break down false independence assumptions latent in a vanilla treebank grammar. Indeed, its ..."
Abstract

Cited by 1052 (70 self)
 Add to MetaCart
We demonstrate that an unlexicalized PCFG can parse much more accurately than previously shown, by making use of simple, linguistically motivated state splits, which break down false independence assumptions latent in a vanilla treebank grammar. Indeed, its
Modular elliptic curves and Fermat’s Last Theorem
 ANNALS OF MATH
, 1995
"... When Andrew John Wiles was 10 years old, he read Eric Temple Bell’s The Last Problem and was so impressed by it that he decided that he would be the first person to prove Fermat’s Last Theorem. This theorem states that there are no nonzero integers a, b, c, n with n> 2 such that a n + b n = c n ..."
Abstract

Cited by 617 (2 self)
 Add to MetaCart
When Andrew John Wiles was 10 years old, he read Eric Temple Bell’s The Last Problem and was so impressed by it that he decided that he would be the first person to prove Fermat’s Last Theorem. This theorem states that there are no nonzero integers a, b, c, n with n> 2 such that a n + b n = c
A Maximum Entropy Model for PartOfSpeech Tagging
, 1996
"... This paper presents a statistical model which trains from a corpus annotated with PartOfSpeech tags and assigns them to previously unseen text with stateoftheart accuracy(96.6%). The model can be classified as a Maximum Entropy model and simultaneously uses many contextual "features" t ..."
Abstract

Cited by 580 (1 self)
 Add to MetaCart
This paper presents a statistical model which trains from a corpus annotated with PartOfSpeech tags and assigns them to previously unseen text with stateoftheart accuracy(96.6%). The model can be classified as a Maximum Entropy model and simultaneously uses many contextual "
On the algorithmic implementation of multiclass kernelbased vector machines
 Journal of Machine Learning Research
"... In this paper we describe the algorithmic implementation of multiclass kernelbased vector machines. Our starting point is a generalized notion of the margin to multiclass problems. Using this notion we cast multiclass categorization problems as a constrained optimization problem with a quadratic ob ..."
Abstract

Cited by 559 (13 self)
 Add to MetaCart
significant running time improvements for large datasets. Finally, we describe various experiments with our approach comparing it to previously studied kernelbased methods. Our experiments indicate that for multiclass problems we attain stateoftheart accuracy.
On Sequential Monte Carlo Sampling Methods for Bayesian Filtering
 STATISTICS AND COMPUTING
, 2000
"... In this article, we present an overview of methods for sequential simulation from posterior distributions. These methods are of particular interest in Bayesian filtering for discrete time dynamic models that are typically nonlinear and nonGaussian. A general importance sampling framework is develop ..."
Abstract

Cited by 1051 (76 self)
 Add to MetaCart
is developed that unifies many of the methods which have been proposed over the last few decades in several different scientific disciplines. Novel extensions to the existing methods are also proposed. We show in particular how to incorporate local linearisation methods similar to those which have previously
RSVP: A New Resource Reservation Protocol
, 1993
"... Whe origin of the RSVP protocol can be traced back to 1991, when a team of network researchers, including myself, started playing with a number of packet scheduling algorithms on the DARTNET (DARPA Testbed NETwork), a network testbed made of open source, workstationbased routers. Because scheduling ..."
Abstract

Cited by 1005 (25 self)
 Add to MetaCart
that could support both unicast and manytomany multicast applications. That effort led to the birth of RSVP. As a signaling protocol designed specifically to run over IP, RSVP distinguishes itself from previous signaling protocols in several fundamental ways. The most profound ones include a softstate
Results 1  10
of
39,088