• Documents
  • Authors
  • Tables
  • Log in
  • Sign up
  • MetaCart
  • DMCA
  • Donate

CiteSeerX logo

Advanced Search Include Citations

Tools

Sorted by:
Try your query at:
Semantic Scholar Scholar Academic
Google Bing DBLP
Results 1 - 10 of 417,994
Next 10 →

On Sequential Monte Carlo Sampling Methods for Bayesian Filtering

by Arnaud Doucet, Simon Godsill, Christophe Andrieu - STATISTICS AND COMPUTING , 2000
"... In this article, we present an overview of methods for sequential simulation from posterior distributions. These methods are of particular interest in Bayesian filtering for discrete time dynamic models that are typically nonlinear and non-Gaussian. A general importance sampling framework is develop ..."
Abstract - Cited by 1051 (76 self) - Add to MetaCart
In this article, we present an overview of methods for sequential simulation from posterior distributions. These methods are of particular interest in Bayesian filtering for discrete time dynamic models that are typically nonlinear and non-Gaussian. A general importance sampling framework

A method for obtaining digital signatures and public-key cryptosystems.

by R L Rivest , A Shamir , L Adleman - Communications of the ACM, , 1978
"... Abstract An encryption method is presented with the novel property that publicly revealing an encryption key does not thereby reveal the corresponding decryption key. This has two important consequences: 1. Couriers or other secure means are not needed to transmit keys, since a message can be encip ..."
Abstract - Cited by 3894 (24 self) - Add to MetaCart
Abstract An encryption method is presented with the novel property that publicly revealing an encryption key does not thereby reveal the corresponding decryption key. This has two important consequences: 1. Couriers or other secure means are not needed to transmit keys, since a message can

Ensemble Methods in Machine Learning

by Thomas G. Dietterich - MULTIPLE CLASSIFIER SYSTEMS, LBCS-1857 , 2000
"... Ensemble methods are learning algorithms that construct a set of classifiers and then classify new data points by taking a (weighted) vote of their predictions. The original ensemble method is Bayesian averaging, but more recent algorithms include error-correcting output coding, Bagging, and boostin ..."
Abstract - Cited by 625 (3 self) - Add to MetaCart
, and boosting. This paper reviews these methods and explains why ensembles can often perform better than any single classifier. Some previous studies comparing ensemble methods are reviewed, and some new experiments are presented to uncover the reasons that Adaboost does not overfit rapidly.

On optimistic methods for concurrency control

by H. T. Kung, John T. Robinson - ACM Transactions on Database Systems , 1981
"... Most current approaches to concurrency control in database systems rely on locking of data objects as a control mechanism. In this paper, two families of nonlocking concurrency controls are presented. The methods used are “optimistic ” in the sense that they rely mainly on transaction backup as a co ..."
Abstract - Cited by 546 (1 self) - Add to MetaCart
Most current approaches to concurrency control in database systems rely on locking of data objects as a control mechanism. In this paper, two families of nonlocking concurrency controls are presented. The methods used are “optimistic ” in the sense that they rely mainly on transaction backup as a

Making the most of statistical analyses: Improving interpretation and presentation

by Gary King, Michael Tomz, Jason Wittenberg - American Journal of Political Science , 2000
"... Social scientists rarely take full advantage of the information available in their statistical results. As a consequence, they miss opportunities to present quantities that are of greatest substantive interest for their research and express the appropriate degree of certainty about these quantities. ..."
Abstract - Cited by 600 (26 self) - Add to MetaCart
. In this article, we offer an approach, built on the technique of statistical simulation, to extract the currently overlooked information from any statistical method and to interpret and present it in a reader-friendly manner. Using this technique requires some expertise,

Novel methods improve prediction of species’ distributions from occurrence data

by Jane Elith, Catherine H. Graham, Robert P. Anderson, Miroslav Dudík, Simon Ferrier, Antoine Guisan, Robert J. Hijmans, Falk Huettmann, John R. Leathwick, Anthony Lehmann, Jin Li, Lucia G. Lohmann, Bette A. Loiselle, Glenn Manion, Craig Moritz, Miguel Nakamura, Yoshinori Nakazawa, Jacob Mcc Overton, A. Townsend Peterson, Steven J. Phillips, Karen Richardson, Ricardo Scachetti-pereira, Robert E. Schapire, Jorge Soberón, Stephen Williams, Mary S. Wisz, Niklaus E. Zimmermann - Ecography , 2006
"... occurrence data ..."
Abstract - Cited by 482 (8 self) - Add to MetaCart
occurrence data

Image registration methods: a survey.

by Barbara Zitová , Jan Flusser , 2003
"... Abstract This paper aims to present a review of recent as well as classic image registration methods. Image registration is the process of overlaying images (two or more) of the same scene taken at different times, from different viewpoints, and/or by different sensors. The registration geometrical ..."
Abstract - Cited by 760 (10 self) - Add to MetaCart
Abstract This paper aims to present a review of recent as well as classic image registration methods. Image registration is the process of overlaying images (two or more) of the same scene taken at different times, from different viewpoints, and/or by different sensors. The registration

Adaptive floating search methods in feature selection

by P. Somol , P. Pudil , J. Novovicova , P. Paclik - PATTERN RECOGNITION LETTERS , 1999
"... A new suboptimal search strategy for feature selection is presented. It represents a more sophisticated version of "classical" floating search algorithms (Pudil et al., 1994), attempts to remove some of their potential deficiencies and facilitates finding a solution even closer to the opti ..."
Abstract - Cited by 548 (21 self) - Add to MetaCart
A new suboptimal search strategy for feature selection is presented. It represents a more sophisticated version of "classical" floating search algorithms (Pudil et al., 1994), attempts to remove some of their potential deficiencies and facilitates finding a solution even closer

Comparison of discrimination methods for the classification of tumors using gene expression data

by Sandrine Dudoit, Jane Fridlyand, Terence P. Speed - JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION , 2002
"... A reliable and precise classification of tumors is essential for successful diagnosis and treatment of cancer. cDNA microarrays and high-density oligonucleotide chips are novel biotechnologies increasingly used in cancer research. By allowing the monitoring of expression levels in cells for thousand ..."
Abstract - Cited by 770 (6 self) - Add to MetaCart
gene expression data is an important aspect of this novel approach to cancer classification. This article compares the performance of different discrimination methods for the classification of tumors based on gene expression data. The methods include nearest-neighbor classifiers, linear discriminant

Unsupervised word sense disambiguation rivaling supervised methods

by David Yarowsky - IN PROCEEDINGS OF THE 33RD ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS , 1995
"... This paper presents an unsupervised learning algorithm for sense disambiguation that, when trained on unannotated English text, rivals the performance of supervised techniques that require time-consuming hand annotations. The algorithm is based on two powerful constraints -- that words tend to have ..."
Abstract - Cited by 638 (4 self) - Add to MetaCart
This paper presents an unsupervised learning algorithm for sense disambiguation that, when trained on unannotated English text, rivals the performance of supervised techniques that require time-consuming hand annotations. The algorithm is based on two powerful constraints -- that words tend to have
Next 10 →
Results 1 - 10 of 417,994
Powered by: Apache Solr
  • About CiteSeerX
  • Submit and Index Documents
  • Privacy Policy
  • Help
  • Data
  • Source
  • Contact Us

Developed at and hosted by The College of Information Sciences and Technology

© 2007-2019 The Pennsylvania State University