Results 1 - 10
of
417,994
On Sequential Monte Carlo Sampling Methods for Bayesian Filtering
- STATISTICS AND COMPUTING
, 2000
"... In this article, we present an overview of methods for sequential simulation from posterior distributions. These methods are of particular interest in Bayesian filtering for discrete time dynamic models that are typically nonlinear and non-Gaussian. A general importance sampling framework is develop ..."
Abstract
-
Cited by 1051 (76 self)
- Add to MetaCart
In this article, we present an overview of methods for sequential simulation from posterior distributions. These methods are of particular interest in Bayesian filtering for discrete time dynamic models that are typically nonlinear and non-Gaussian. A general importance sampling framework
A method for obtaining digital signatures and public-key cryptosystems.
- Communications of the ACM,
, 1978
"... Abstract An encryption method is presented with the novel property that publicly revealing an encryption key does not thereby reveal the corresponding decryption key. This has two important consequences: 1. Couriers or other secure means are not needed to transmit keys, since a message can be encip ..."
Abstract
-
Cited by 3894 (24 self)
- Add to MetaCart
Abstract An encryption method is presented with the novel property that publicly revealing an encryption key does not thereby reveal the corresponding decryption key. This has two important consequences: 1. Couriers or other secure means are not needed to transmit keys, since a message can
Ensemble Methods in Machine Learning
- MULTIPLE CLASSIFIER SYSTEMS, LBCS-1857
, 2000
"... Ensemble methods are learning algorithms that construct a set of classifiers and then classify new data points by taking a (weighted) vote of their predictions. The original ensemble method is Bayesian averaging, but more recent algorithms include error-correcting output coding, Bagging, and boostin ..."
Abstract
-
Cited by 625 (3 self)
- Add to MetaCart
, and boosting. This paper reviews these methods and explains why ensembles can often perform better than any single classifier. Some previous studies comparing ensemble methods are reviewed, and some new experiments are presented to uncover the reasons that Adaboost does not overfit rapidly.
On optimistic methods for concurrency control
- ACM Transactions on Database Systems
, 1981
"... Most current approaches to concurrency control in database systems rely on locking of data objects as a control mechanism. In this paper, two families of nonlocking concurrency controls are presented. The methods used are “optimistic ” in the sense that they rely mainly on transaction backup as a co ..."
Abstract
-
Cited by 546 (1 self)
- Add to MetaCart
Most current approaches to concurrency control in database systems rely on locking of data objects as a control mechanism. In this paper, two families of nonlocking concurrency controls are presented. The methods used are “optimistic ” in the sense that they rely mainly on transaction backup as a
Making the most of statistical analyses: Improving interpretation and presentation
- American Journal of Political Science
, 2000
"... Social scientists rarely take full advantage of the information available in their statistical results. As a consequence, they miss opportunities to present quantities that are of greatest substantive interest for their research and express the appropriate degree of certainty about these quantities. ..."
Abstract
-
Cited by 600 (26 self)
- Add to MetaCart
. In this article, we offer an approach, built on the technique of statistical simulation, to extract the currently overlooked information from any statistical method and to interpret and present it in a reader-friendly manner. Using this technique requires some expertise,
Novel methods improve prediction of species’ distributions from occurrence data
- Ecography
, 2006
"... occurrence data ..."
Image registration methods: a survey.
, 2003
"... Abstract This paper aims to present a review of recent as well as classic image registration methods. Image registration is the process of overlaying images (two or more) of the same scene taken at different times, from different viewpoints, and/or by different sensors. The registration geometrical ..."
Abstract
-
Cited by 760 (10 self)
- Add to MetaCart
Abstract This paper aims to present a review of recent as well as classic image registration methods. Image registration is the process of overlaying images (two or more) of the same scene taken at different times, from different viewpoints, and/or by different sensors. The registration
Adaptive floating search methods in feature selection
- PATTERN RECOGNITION LETTERS
, 1999
"... A new suboptimal search strategy for feature selection is presented. It represents a more sophisticated version of "classical" floating search algorithms (Pudil et al., 1994), attempts to remove some of their potential deficiencies and facilitates finding a solution even closer to the opti ..."
Abstract
-
Cited by 548 (21 self)
- Add to MetaCart
A new suboptimal search strategy for feature selection is presented. It represents a more sophisticated version of "classical" floating search algorithms (Pudil et al., 1994), attempts to remove some of their potential deficiencies and facilitates finding a solution even closer
Comparison of discrimination methods for the classification of tumors using gene expression data
- JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION
, 2002
"... A reliable and precise classification of tumors is essential for successful diagnosis and treatment of cancer. cDNA microarrays and high-density oligonucleotide chips are novel biotechnologies increasingly used in cancer research. By allowing the monitoring of expression levels in cells for thousand ..."
Abstract
-
Cited by 770 (6 self)
- Add to MetaCart
gene expression data is an important aspect of this novel approach to cancer classification. This article compares the performance of different discrimination methods for the classification of tumors based on gene expression data. The methods include nearest-neighbor classifiers, linear discriminant
Unsupervised word sense disambiguation rivaling supervised methods
- IN PROCEEDINGS OF THE 33RD ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS
, 1995
"... This paper presents an unsupervised learning algorithm for sense disambiguation that, when trained on unannotated English text, rivals the performance of supervised techniques that require time-consuming hand annotations. The algorithm is based on two powerful constraints -- that words tend to have ..."
Abstract
-
Cited by 638 (4 self)
- Add to MetaCart
This paper presents an unsupervised learning algorithm for sense disambiguation that, when trained on unannotated English text, rivals the performance of supervised techniques that require time-consuming hand annotations. The algorithm is based on two powerful constraints -- that words tend to have
Results 1 - 10
of
417,994