Results 1  10
of
1,841
The Quickhull algorithm for convex hulls
 ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE
, 1996
"... The convex hull of a set of points is the smallest convex set that contains the points. This article presents a practical convex hull algorithm that combines the twodimensional Quickhull Algorithm with the generaldimension BeneathBeyond Algorithm. It is similar to the randomized, incremental algo ..."
Abstract

Cited by 713 (0 self)
 Add to MetaCart
The convex hull of a set of points is the smallest convex set that contains the points. This article presents a practical convex hull algorithm that combines the twodimensional Quickhull Algorithm with the generaldimension BeneathBeyond Algorithm. It is similar to the randomized, incremental
Interiorpoint Methods
, 2000
"... The modern era of interiorpoint methods dates to 1984, when Karmarkar proposed his algorithm for linear programming. In the years since then, algorithms and software for linear programming have become quite sophisticated, while extensions to more general classes of problems, such as convex quadrati ..."
Abstract

Cited by 612 (15 self)
 Add to MetaCart
The modern era of interiorpoint methods dates to 1984, when Karmarkar proposed his algorithm for linear programming. In the years since then, algorithms and software for linear programming have become quite sophisticated, while extensions to more general classes of problems, such as convex
Multiple kernel learning, conic duality, and the SMO algorithm
 In Proceedings of the 21st International Conference on Machine Learning (ICML
, 2004
"... While classical kernelbased classifiers are based on a single kernel, in practice it is often desirable to base classifiers on combinations of multiple kernels. Lanckriet et al. (2004) considered conic combinations of kernel matrices for the support vector machine (SVM), and showed that the optimiz ..."
Abstract

Cited by 445 (31 self)
 Add to MetaCart
While classical kernelbased classifiers are based on a single kernel, in practice it is often desirable to base classifiers on combinations of multiple kernels. Lanckriet et al. (2004) considered conic combinations of kernel matrices for the support vector machine (SVM), and showed
Applications of Random Sampling in Computational Geometry, II
 Discrete Comput. Geom
, 1995
"... We use random sampling for several new geometric algorithms. The algorithms are "Las Vegas," and their expected bounds are with respect to the random behavior of the algorithms. These algorithms follow from new general results giving sharp bounds for the use of random subsets in geometric ..."
Abstract

Cited by 432 (12 self)
 Add to MetaCart
(A + n log n) expected time, where A is the number of intersecting pairs reported. The algorithm requires O(n) space in the worst case. Another algorithm computes the convex hull of n points in E d in O(n log n) expected time for d = 3, and O(n bd=2c ) expected time for d ? 3. The algorithm also
The Relationship Between PrecisionRecall and ROC Curves
 In ICML ’06: Proceedings of the 23rd international conference on Machine learning
, 2006
"... Receiver Operator Characteristic (ROC) curves are commonly used to present results for binary decision problems in machine learning. However, when dealing with highly skewed datasets, PrecisionRecall (PR) curves give a more informative picture of an algorithm’s performance. We show that a deep conn ..."
Abstract

Cited by 415 (4 self)
 Add to MetaCart
connection exists between ROC space and PR space, such that a curve dominates in ROC space if and only if it dominates in PR space. A corollary is the notion of an achievable PR curve, which has properties much like the convex hull in ROC space; we show an efficient algorithm for computing this curve
On the ultimate convex hull algorithm in practice
 PATTERN RECOGNITION LETTERS
, 1985
"... Kirkpatrick and Seidel [I 3,14] recently proposed an algorithm for computing the convex hull of n points in the plane that runs in O(n log h) worst case time, where h denotes the number of points on the convex hull of the set. Here a modification of their algorithm is proposed that is believed to ru ..."
Abstract

Cited by 4 (1 self)
 Add to MetaCart
Kirkpatrick and Seidel [I 3,14] recently proposed an algorithm for computing the convex hull of n points in the plane that runs in O(n log h) worst case time, where h denotes the number of points on the convex hull of the set. Here a modification of their algorithm is proposed that is believed
A Pivoting Algorithm for Convex Hulls and Vertex Enumeration of Arrangements and Polyhedra
, 1990
"... We present a new piv otbased algorithm which can be used with minor modification for the enumeration of the facets of the convex hull of a set of points, or for the enumeration of the vertices of an arrangement or of a convex polyhedron, in arbitrary dimension. The algorithm has the following prope ..."
Abstract

Cited by 223 (29 self)
 Add to MetaCart
We present a new piv otbased algorithm which can be used with minor modification for the enumeration of the facets of the convex hull of a set of points, or for the enumeration of the vertices of an arrangement or of a convex polyhedron, in arbitrary dimension. The algorithm has the following
How good are convex hull algorithms?
, 1996
"... A convex polytope P can be speci ed in two ways: as the convex hull of the vertex set V of P, or as the intersection of the set H of its facetinducing halfspaces. The vertex enumeration problem is to compute V from H. The facet enumeration problem it to compute H from V. These two problems are esse ..."
Abstract

Cited by 111 (9 self)
 Add to MetaCart
A convex polytope P can be speci ed in two ways: as the convex hull of the vertex set V of P, or as the intersection of the set H of its facetinducing halfspaces. The vertex enumeration problem is to compute V from H. The facet enumeration problem it to compute H from V. These two problems
Large scale multiple kernel learning
 JOURNAL OF MACHINE LEARNING RESEARCH
, 2006
"... While classical kernelbased learning algorithms are based on a single kernel, in practice it is often desirable to use multiple kernels. Lanckriet et al. (2004) considered conic combinations of kernel matrices for classification, leading to a convex quadratically constrained quadratic program. We s ..."
Abstract

Cited by 340 (20 self)
 Add to MetaCart
While classical kernelbased learning algorithms are based on a single kernel, in practice it is often desirable to use multiple kernels. Lanckriet et al. (2004) considered conic combinations of kernel matrices for classification, leading to a convex quadratically constrained quadratic program. We
Analysis and Visualization of Classifier Performance: Comparison under Imprecise Class and Cost Distributions. In:
 3rd International Conference on Knowledge Discovery and Data Mining,
, 1997
"... Abstract Applications of inductive learning algorithms to realworld data mining problems have shown repeatedly that using accuracy to compare classifiers is not adequate because the underlying assumptions rarely hold. We present a method for the comparison of classifier performance that is robust t ..."
Abstract

Cited by 313 (15 self)
 Add to MetaCart
to imprecise class distributions and misclassification costs. The ROC convex hull method combines techniques from ROC analysis, decision analysis and computational geometry, and I,LT..L11~. ...,I.,f ~I! aaapss r;nem 50 cne parr;iculars 01 analyzing iearned classifiers. The method
Results 1  10
of
1,841