• Documents
  • Authors
  • Tables
  • Log in
  • Sign up
  • MetaCart
  • DMCA
  • Donate

CiteSeerX logo

Advanced Search Include Citations

Tools

Sorted by:
Try your query at:
Semantic Scholar Scholar Academic
Google Bing DBLP
Results 1 - 10 of 4,510
Next 10 →

Fisher Discriminant Analysis With Kernels

by Sebastian Mika, Gunnar Rätsch, Jason Weston, Bernhard Schölkopf, Klaus-Robert Müller , 1999
"... A non-linear classification technique based on Fisher's discriminant is proposed. The main ingredient is the kernel trick which allows the efficient computation of Fisher discriminant in feature space. The linear classification in feature space corresponds to a (powerful) non-linear decision f ..."
Abstract - Cited by 503 (18 self) - Add to MetaCart
A non-linear classification technique based on Fisher's discriminant is proposed. The main ingredient is the kernel trick which allows the efficient computation of Fisher discriminant in feature space. The linear classification in feature space corresponds to a (powerful) non-linear decision

Multiresolution grayscale and rotation invariant texture classification with local binary patterns

by Timo Ojala, Matti Pietikäinen, Topi Mäenpää - IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE , 2002
"... This paper presents a theoretically very simple, yet efficient, multiresolution approach to gray-scale and rotation invariant texture classification based on local binary patterns and nonparametric discrimination of sample and prototype distributions. The method is based on recognizing that certain ..."
Abstract - Cited by 1299 (39 self) - Add to MetaCart
This paper presents a theoretically very simple, yet efficient, multiresolution approach to gray-scale and rotation invariant texture classification based on local binary patterns and nonparametric discrimination of sample and prototype distributions. The method is based on recognizing

Transfer of Cognitive Skill

by John R. Anderson , 1989
"... A framework for skill acquisition is proposed that includes two major stages in the development of a cognitive skill: a declarative stage in which facts about the skill domain are interpreted and a procedural stage in which the domain knowledge is directly embodied in procedures for performing the s ..."
Abstract - Cited by 894 (22 self) - Add to MetaCart
. These processes include generalization, discrimination, and strengthening of productions. Comparisons are made to similar concepts from past learning theories. How these learning mechanisms apply to produce the power law speedup in processing time with practice is discussed. It requires at least 100 hours

Evaluating Color Descriptors for Object and Scene Recognition

by Koen E. A. van de Sande, Theo Gevers, Cees G. M. Snoek , 2010
"... Image category recognition is important to access visual information on the level of objects and scene types. So far, intensity-based descriptors have been widely used for feature extraction at salient points. To increase illumination invariance and discriminative power, color descriptors have been ..."
Abstract - Cited by 423 (33 self) - Add to MetaCart
Image category recognition is important to access visual information on the level of objects and scene types. So far, intensity-based descriptors have been widely used for feature extraction at salient points. To increase illumination invariance and discriminative power, color descriptors have

Learning the discriminative power-invariance trade-off

by Manik Varma, D. Ray - IN ICCV , 2007
"... We investigate the problem of learning optimal descriptors for a given classification task. Many hand-crafted descriptors have been proposed in the literature for measuring visual similarity. Looking past initial differences, what really distinguishes one descriptor from another is the tradeoff that ..."
Abstract - Cited by 228 (4 self) - Add to MetaCart
that it achieves between discriminative power and invariance. Since this trade-off must vary from task to task, no single descriptor can be optimal in all situations. Our focus, in this paper, is on learning the optimal tradeoff for classification given a particular training set and prior constraints. The problem

Multiple Kernels for Object Detection

by Andrea Vedaldi, Varun Gulshan, Manik Varma, Andrew Zisserman
"... Our objective is to obtain a state-of-the art object category detector by employing a state-of-the-art image classifier to search for the object in all possible image subwindows. We use multiple kernel learning of Varma and Ray (ICCV 2007) to learn an optimal combination of exponential χ 2 kernels, ..."
Abstract - Cited by 275 (10 self) - Add to MetaCart
. Thus we propose a novel three-stage classifier, which combines linear, quasi-linear, and non-linear kernel SVMs. We show that increasing the non-linearity of the kernels increases their discriminative power, at the cost of an increased computational complexity. Our contributions include (i) showing

Internet traffic classification using bayesian analysis techniques

by Andrew W. Moore, Denis Zuev - In ACM SIGMETRICS , 2005
"... Accurate traffic classification is of fundamental importance to numerous other network activities, from security monitoring to accounting, and from Quality of Service to providing operators with useful forecasts for long-term provisioning. We apply a Naïve Bayes estimator to categorize traffic by ap ..."
Abstract - Cited by 271 (8 self) - Add to MetaCart
–70%. While our technique uses training data, with categories derived from packet-content, all of our training and testing was done using header-derived discriminators. We emphasize this as a powerful aspect of our approach: using samples of well-known traffic to allow the categorization of traffic using

Shape quantization and recognition with randomized trees

by Yali Amit, Donald Geman - NEURAL COMPUTATION , 1997
"... We explore a new approach to shape recognition based on a virtually infinite family of binary features ("queries") of the image data, designed to accommodate prior information about shape invariance and regularity. Each query corresponds to a spatial arrangement ofseveral local topographic ..."
Abstract - Cited by 263 (18 self) - Add to MetaCart
topographic codes ("tags") which are in themselves too primitive and common to be informative about shape. All the discriminating power derives from relative angles and distances among the tags. The important attributes of the queries are (i) a natural partial ordering corresponding to increasing

Discriminative

by S. T. :lhu]fkr
"... power of the receptors activated by k-contiguous bits rule ..."
Abstract - Add to MetaCart
power of the receptors activated by k-contiguous bits rule

KPCA plus LDA: a complete kernel Fisher discriminant framework for feature extraction and recognition

by Jian Yang, Alejandro F. Frangi, Jing-yu Yang, David Zhang, Zhong Jin - IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE , 2005
"... This paper examines the theory of kernel Fisher discriminant analysis (KFD) in a Hilbert space and develops a two-phase KFD framework, i.e., kernel principal component analysis (KPCA) plus Fisher linear discriminant analysis (LDA). This framework provides novel insights into the nature of KFD. Base ..."
Abstract - Cited by 139 (7 self) - Add to MetaCart
CKFD a more powerful discriminator. The proposed algorithm was tested and evaluated using the FERET face database and the CENPARMI handwritten numeral database. The experimental results show that CKFD outperforms other KFD algorithms.
Next 10 →
Results 1 - 10 of 4,510
Powered by: Apache Solr
  • About CiteSeerX
  • Submit and Index Documents
  • Privacy Policy
  • Help
  • Data
  • Source
  • Contact Us

Developed at and hosted by The College of Information Sciences and Technology

© 2007-2019 The Pennsylvania State University