Results 1  10
of
3,113,570
Regression Shrinkage and Selection Via the Lasso
 Journal of the Royal Statistical Society, Series B
, 1994
"... We propose a new method for estimation in linear models. The "lasso" minimizes the residual sum of squares subject to the sum of the absolute value of the coefficients being less than a constant. Because of the nature of this constraint it tends to produce some coefficients that are exactl ..."
Abstract

Cited by 4055 (51 self)
 Add to MetaCart
We propose a new method for estimation in linear models. The "lasso" minimizes the residual sum of squares subject to the sum of the absolute value of the coefficients being less than a constant. Because of the nature of this constraint it tends to produce some coefficients
The adaptive LASSO and its oracle properties
 Journal of the American Statistical Association
"... The lasso is a popular technique for simultaneous estimation and variable selection. Lasso variable selection has been shown to be consistent under certain conditions. In this work we derive a necessary condition for the lasso variable selection to be consistent. Consequently, there exist certain sc ..."
Abstract

Cited by 660 (10 self)
 Add to MetaCart
The lasso is a popular technique for simultaneous estimation and variable selection. Lasso variable selection has been shown to be consistent under certain conditions. In this work we derive a necessary condition for the lasso variable selection to be consistent. Consequently, there exist certain
High dimensional graphs and variable selection with the Lasso
 ANNALS OF STATISTICS
, 2006
"... The pattern of zero entries in the inverse covariance matrix of a multivariate normal distribution corresponds to conditional independence restrictions between variables. Covariance selection aims at estimating those structural zeros from data. We show that neighborhood selection with the Lasso is a ..."
Abstract

Cited by 751 (23 self)
 Add to MetaCart
The pattern of zero entries in the inverse covariance matrix of a multivariate normal distribution corresponds to conditional independence restrictions between variables. Covariance selection aims at estimating those structural zeros from data. We show that neighborhood selection with the Lasso
Least angle regression
 Ann. Statist
"... The purpose of model selection algorithms such as All Subsets, Forward Selection and Backward Elimination is to choose a linear model on the basis of the same set of data to which the model will be applied. Typically we have available a large collection of possible covariates from which we hope to s ..."
Abstract

Cited by 1308 (43 self)
 Add to MetaCart
implements the Lasso, an attractive version of ordinary least squares that constrains the sum of the absolute regression coefficients; the LARS modification calculates all possible Lasso estimates for a given problem, using an order of magnitude less computer time than previous methods. (2) A different LARS
The bayesian lasso
, 2005
"... The Lasso estimate for linear regression parameters can be interpreted as a Bayesian posterior mode estimate when the regression parameters have independent Laplace (doubleexponential) priors. Gibbs sampling from this posterior is possible using an expanded hierarchy with conjugate normal priors ..."
Abstract

Cited by 277 (0 self)
 Add to MetaCart
The Lasso estimate for linear regression parameters can be interpreted as a Bayesian posterior mode estimate when the regression parameters have independent Laplace (doubleexponential) priors. Gibbs sampling from this posterior is possible using an expanded hierarchy with conjugate normal priors
SIMULTANEOUS ANALYSIS OF LASSO AND DANTZIG SELECTOR
 SUBMITTED TO THE ANNALS OF STATISTICS
, 2007
"... We exhibit an approximate equivalence between the Lasso estimator and Dantzig selector. For both methods we derive parallel oracle inequalities for the prediction risk in the general nonparametric regression model, as well as bounds on the ℓp estimation loss for 1 ≤ p ≤ 2 in the linear model when th ..."
Abstract

Cited by 465 (8 self)
 Add to MetaCart
We exhibit an approximate equivalence between the Lasso estimator and Dantzig selector. For both methods we derive parallel oracle inequalities for the prediction risk in the general nonparametric regression model, as well as bounds on the ℓp estimation loss for 1 ≤ p ≤ 2 in the linear model when
Asymptotics for Lassotype estimators
, 2000
"... this paper, we consider the asymptotic behaviour of regression estimators that minimize the residual sum of squares plus a penalty proportional to ..."
Abstract

Cited by 254 (3 self)
 Add to MetaCart
this paper, we consider the asymptotic behaviour of regression estimators that minimize the residual sum of squares plus a penalty proportional to
Estimation and Inference in Econometrics
, 1993
"... The astonishing increase in computer performance over the past two decades has made it possible for economists to base many statistical inferences on simulated, or bootstrap, distributions rather than on distributions obtained from asymptotic theory. In this paper, I review some of the basic ideas o ..."
Abstract

Cited by 1151 (3 self)
 Add to MetaCart
The astonishing increase in computer performance over the past two decades has made it possible for economists to base many statistical inferences on simulated, or bootstrap, distributions rather than on distributions obtained from asymptotic theory. In this paper, I review some of the basic ideas
Estimating nonresponse bias in mail surveys
 Journal of Marketing Research
, 1977
"... Valid predictions for the direction of nonresponse bias were obtained from subjective estimates and extrapolations in an analysis of mail survey data from published studies. For estimates of the magnitude of bias, the use of extrapolations led to substantial improvements over a strategy of not using ..."
Abstract

Cited by 877 (5 self)
 Add to MetaCart
Valid predictions for the direction of nonresponse bias were obtained from subjective estimates and extrapolations in an analysis of mail survey data from published studies. For estimates of the magnitude of bias, the use of extrapolations led to substantial improvements over a strategy
Graphs over Time: Densification Laws, Shrinking Diameters and Possible Explanations
, 2005
"... How do real graphs evolve over time? What are “normal” growth patterns in social, technological, and information networks? Many studies have discovered patterns in static graphs, identifying properties in a single snapshot of a large network, or in a very small number of snapshots; these include hea ..."
Abstract

Cited by 534 (48 self)
 Add to MetaCart
How do real graphs evolve over time? What are “normal” growth patterns in social, technological, and information networks? Many studies have discovered patterns in static graphs, identifying properties in a single snapshot of a large network, or in a very small number of snapshots; these include heavy tails for in and outdegree distributions, communities, smallworld phenomena, and others. However, given the lack of information about network evolution over long periods, it has been hard to convert these findings into statements about trends over time. Here we study a wide range of real graphs, and we observe some surprising phenomena. First, most of these graphs densify over time, with the number of edges growing superlinearly in the number of nodes. Second, the average distance between nodes often shrinks over time, in contrast to the conventional wisdom that such distance parameters should increase slowly as a function of the number of nodes (like O(log n) orO(log(log n)). Existing graph generation models do not exhibit these types of behavior, even at a qualitative level. We provide a new graph generator, based on a “forest fire” spreading process, that has a simple, intuitive justification, requires very few parameters (like the “flammability” of nodes), and produces graphs exhibiting the full range of properties observed both in prior work and in the present study.
Results 1  10
of
3,113,570